(完整)人教版八年级下册数学第一章二次根式测试题

合集下载

新人教版初中数学八年级数学下册第一单元《二次根式》测试题(有答案解析)(5)

新人教版初中数学八年级数学下册第一单元《二次根式》测试题(有答案解析)(5)

一、选择题1.下列各式中,正确的是( )A .93±=B .93=±C .()233-=-D .()233-= 2.若式子x 2-有意义,则x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2< 3.下列二次根式是最简二次根式的有( ) A .2 B .18 C .0.5 D .2a b 4.已知x ,y 为实数,y x 323x 2=-+-+,则y x 的值等于( ) A .6 B .5 C .9 D .85.下列二次根式中是最简二次根式的是( )A .15B .32C .18D .26.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13- 7.下列各式中,错误的是( )A .2(3)3-=B .233-=-C .2(3)3=D .2(3)3-=- 8.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b9.下列四个式子中,与1(2021)2021a a --的值相等的是( ) A 2021a -B .2021a --C 2021a -D .2021a --10.下列根式是最简二次根式的是( )A 8B 12C 12D 1511.估计6 )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 12.已知51a =-,62b =-,则a 与b 的大小关系是( ). A .a b > B .a b < C .a b = D .无法确定二、填空题13.)3750a b b >=________.14.15.若3,m ,5________.16.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.17.20052006=________.18.)0a >=______.19.已知2160x x-=,则x 的值为________.20.=________. 三、解答题21.计算:(1)(2)21)-.22.计算:(1(2(3))0π(4))(21- 23.计算:(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭ ;(2)22)++.24.先化简,再求代数式21123a a a a a ⎛⎫+++- ⎪⎝⎭的值,其中31a 25.计算:(1(2(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭(4)2-.26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意; 故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.2.A解析:A【分析】因为二次根式的被开方数是非负数,所以x 20-≥,据此可以求得x 的取值范围. 【详解】则x20-≥,解得:x2≥.故选:A【点睛】(a0≥)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.A解析:A【分析】根据最简二次根式的定义依次判断即可.【详解】解:A被开方数不含分母,不含能开得尽的因数或因式,故A是最简二次根式;B B不是最简二次根式;C C不是最简二次根式;D D不是最简二次根式;故选:A.【点睛】本题考查了最简二次根式的概念,掌握最简二次根式的概念是解题的关键.4.C解析:C【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】解:依题意有3030xx-≥⎧⎨-≥⎩,解得3x=,∴2y=,∴239yx==.故选:C.【点睛】本题主要考查了二次根式有意义的条件,正确把握相关性质是解题关键.5.A解析:A【分析】利用最简二次根式定义判断即可.【详解】2=,故本选项不合题意;=2=,故本选项不合题意. 故选:A .【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.6.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 7.D解析:D【分析】根据算术平方根的意义,可得答案.【详解】解:A 、2(3=,故A 计算正确,不符合题意;B 、3=-,故B 计算正确,不符合题意;C 、23=,故C 计算正确,不符合题意;D 3=,故D 计算错误,符合题意;故选:D .【点睛】(a≥0).8.C解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 9.D解析:D【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案.【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---== 故选:D .【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->. 10.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A ,故A 不是最简二次根式;B =,故B 不是最简二次根式;C 2,故C 不是最简二次根式, 故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.11.C【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果.【详解】解:∵16<24<25,∴45,即4<5,故选:C.【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.12.B解析:B【分析】将a=,b=进行分母有理化,再比较即可.【详解】解:451451 515151a,46262 626262b,∵<1<∴16+<+∴a b<.故选B.【点睛】本题考查了分母有理化,不等式的性质,实数比较大小等知识点,熟悉相关性质是解题的关键.二、填空题13.【分析】根据二次根式的性质化简【详解】故答案为:【点睛】此题考查二次根式的化简掌握二次根式的性质是解题的关键解析:5【分析】根据二次根式的性质化简.=5故答案为:5【点睛】此题考查二次根式的化简,掌握二次根式的性质是解题的关键.14.【分析】首先把和化成与原根式相等的根指数相等的根式再进行比较即可【详解】故答案为:【点睛】本题考查了实数的大小比较和根式的性质的应用关键是把根式化成与原根式相等的根指数相等的根式解析:<【分析】【详解】63==,==,6298132766∴<,<故答案为:<.【点睛】本题考查了实数的大小比较和根式的性质的应用,关键是把根式化成与原根式相等的根指数相等的根式.15.【分析】先根据三角形三边的关系判断2-m和m-8的正负然后根据二次根式的性质化简即可【详解】解:∵3m5为三角形的三边长∴5-3<m<5+3∴2<m<8∴2-m<0m-8<0∴=-(2-m)+(m-m-解析:210【分析】先根据三角形三边的关系判断2-m和m-8的正负,然后根据二次根式的性质化简即可.【详解】解:∵3,m,5为三角形的三边长,∴5-3<m<5+3,∴2<m<8,∴2-m<0,m-8<0,∴=-(2-m)+(m-8)=-2+m+m-8=2m-10.故答案为:2m-10.【点睛】本题考查了三角形三条边的关系,以及二次根式的性质,熟练掌握二次根式的性质是解答本题的关键.16.【分析】根据负整数指数幂定义绝对值的性质二次根式的除法计算法则依次计算再计算加减法即可【详解】解:原式==故答案为:【点睛】此题考查计算能力正确掌握负整数指数幂定义绝对值的性质二次根式的除法计算法则解析:2+【分析】根据负整数指数幂定义,绝对值的性质,二次根式的除法计算法则依次计算,再计算加减法即可.【详解】解:原式=42-+2+故答案为:2+.【点睛】此题考查计算能力,正确掌握负整数指数幂定义,绝对值的性质,二次根式的除法计算法则是解题的关键.17.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析:【分析】逆用积的乘方法则和平方差公式计算即可.【详解】解:原式=20052005⋅⋅ 2005⎡⎤=⋅⋅⎣⎦=-=故答案为:-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.18.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.19.4或2【分析】先求出x 的取值范围然后分或求解即可;【详解】解:由题意得x≠0且x-2≥0∴x≥2且x≠0∵∴或当时则x2-16=0解得x=4或x=-4(舍去);当时则x-2=0解得x=2;∴x 的值是解析:4或2【分析】先求出x 的取值范围,然后分2160x x-=0=求解即可; 【详解】解:由题意得x≠0,且x-2≥0,∴x≥2,且x≠0, ∵2160x x-=, ∴2160x x-=0=, 当2160x x-=时, 则x 2-16=0,解得x=4,或x=-4(舍去);0=时,则x-2=0,解得x=2;∴x 的值是4或2,故答案为:4或2.【点睛】本题考查了二次根式有意义的条件,分式的值为零的条件,以及分类讨论的数学思想,分类讨论是解答本题的关键.20.【分析】先根据二次根式的性质化简再合并即可【详解】解:故答案为:【点睛】本题考查了二次根式的性质和二次根式的加减运算属于基础题目熟练掌握基本知识是解题关键解析:2【分析】先根据二次根式的性质化简,再合并即可.【详解】==【点睛】本题考查了二次根式的性质和二次根式的加减运算,属于基础题目,熟练掌握基本知识是解题关键.三、解答题21.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)3;(2)3;(31;(4)2【分析】(1)先进行二次根式的乘法运算,然后进行二次根式的除法运算即可;(2)先把立方根、二次根式化简,然后合并即可;(3)先计算零指数幂和二次根式的除法,再计算加减法即可;(4)利用平方差公式和完全平方公式计算后再合并.解:(13=;(2=34-=3-=3;(3))0π=1-=12-=1;(4))(21-=31(1812)+--=2【点睛】本题考查了二次根式的混合运算:先计算乘除,再计算加减,掌握运算法则及乘法公式是关键.23.(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭,=312+,4.(2)22)++,=2222-+,=523-+-,=10-本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.24.()()123a aa++;【分析】根据分式的乘除法则进行化简即可解题.【详解】原式=()()() 2223112 11132+=+33333a a aa a a a aa a a a a a++++--++==,当a=时,1316363++====.【点睛】本题考查分式的化简求值及二次根式的运算,熟练运用运算法则是解题关键.25.(1)-;(2)43)16;(4)-.【分析】(1)先化简二次根式,再进行二次根式的加减运算即可.(2)先化简二次根式,再进行二次根式的乘除运算,最后进行二次根式的加减运算即可.(3)先利用绝对值,零指数幂,负整数指数幂、立方根计算出各项,再进行加减运算即可.(4)先利用完全平方式和平方差公式展开,再化简二次根式,最后进行二次根式加减乘除混合运算即可.【详解】(124333=⨯⨯⨯==-(22=4=4=+(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭5193=-++16=(4)2-22222=--+612202=--+4=-⨯=-【点睛】本题考查实数的混合运算,掌握去绝对值,零指数幂、负整数指数幂和求立方根的计算,二次根式的混合运算是解答本题的关键.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。

八年级数学下册《二次根式计算题》练习题与答案(人教版)

八年级数学下册《二次根式计算题》练习题与答案(人教版)

八年级数学下册《二次根式计算题》练习题与答案(人教版)一、选择题1.下列等式成立的是( ) A.9-4= 5 B.5×3=15 C.9=±3 D.(-9)2=-92.计算2(6÷3)的结果是( )A. 3B. 2C.2D.2 23.下列变形正确的是( ) A. ; B. ; C. ; D. ;4.关于8的叙述正确的是( )A.在数轴上不存在表示8的点B.8=2+ 6C.8=±2 2D.与8最接近的整数是35.下列计算正确的是( )A.2+3= 5B.6×2=2 3C.6÷122=12 3D.32﹣2=3 6.已知a ,b 分别是6﹣13的整数部分和小数部分,则2a ﹣b 的值为( ) A.3﹣13 B.4﹣13 C.13 D.2+13二、填空题7.计算:8+2= .8.计算:(2﹣3)2+26= .9.计算:(2-23)2= .10.计算(1-2)2+18的值是________. 11.计算28﹣312+2= .12.比较大小:2+6________3+ 5.三、解答题13.计算:12×68.14.计算:(212-313)× 615.计算:(46-42+38)÷2 2.16.计算:6×(13﹣1)17.计算:(2+1)2﹣8+(﹣2)2.18.计算:(27+72)2﹣(27﹣72)2.19.先化简,再求值:(2x +y)2+(x -y)(x +y)-5x(x -y),其中x =2+1,y =-1.20.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.21.已知a=5+2,b=5﹣2,求a 2+b 2﹣2ab 的值.22.已知121121-=+=y x , ;3x 2+4xy+3y 2求的值.23.阅读下列材料,回答有关问题:在实数这章中,遇到过这样的式子,我们把这样的式子叫做二次根式,根号下的数叫做被开方数.如果一个二次根式的被开方数中有的因数能开得尽方,可以利用a ·b =a ·b(a ≥0,b ≥0);a b =a b (a ≥0,b>0)将这些因数开出来,从而将二次根式化简.当一个二次根式的被开方数中不含开得尽方的因数或者被开方数中不含有分母时,这样的二次根式叫做最简二次根式,例如,13化成最简二次根式是33,27化成最简二次根式是33,几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如上面的例子中的13和27就是同类二次根式.(1)请判断下列各式中,哪些是同类二次根式?(2)二次根式中的同类二次根式可以像整式中的同类项一样合并,请计算:2+75-18-150+127- 3.24.阅读下列解题过程.请回答下列问题:(1)观察上面解题过程,请直接写出的结果为 .(2)利用上面所提供的解法,请化简:的值.(3)不计算近似值,试比较(13-11)与(15-13)的大小,并说明理由.参考答案1.B2.C.3.C.4.D.5.B6.C7.答案为:3 2.8.答案为:5.9.答案为:16-8 3.10.答案为:42﹣1.11.答案为:3 2.12.答案为:<.13.解:原式=12×68=9=3. 14.解:原式=9 2.15.解:原式=4+ 6.16.解:原式=6×13﹣6=2﹣ 6.17.解:原式=3+22﹣22+4=7.18.解:原式=(27+72+27﹣72)×(27+72﹣27+72) =47×142=5614.19.解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy =9xy当x =2+1,y =2-1时原式=9(2+1)(2-1)=9×(2-1)=9×1=9.20.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32. 21.解:∵a=5+2,b=5﹣ 2∴a﹣b=2 2∴a2+b2﹣2ab=(a﹣b)2=(22)2=8.22.解:x=2-1,y=2+1,原式的值为2223.解:(1)75=5 3 18=3 21 50=210127=39∴ 2 18150是同类二次根式;751273是同类二次根式.(2)原式=2+53-32-210+39-3=-21210+3739.24.解:(1);。

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)

人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)

人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)类型一根式是整数求字母1则正整数n的最小值为()A.1B.2C.3D.42则正整数n的最小值是()A.2B.4C.6D.8【详解】解:242n=是整数即6n是完全平方数;的最小正整数值为6.本题主要考查了二次根式的定义3.已知n是一个正整数则n的最小值是()A.3B.5C.15D.45【答案】B【分析】由题意可知45n是一个完全平方数从而可求得答案.4则正整数n的最小值为()A.2B.3C.4D.55则a能取的最小整数为()A.0B.1C.2D.3【详解】解:41a+成立解得a≥-又41a+是整数a能取的最小整数为0故选:A.【点睛】本题考查了二次根式有意义的条件键.6.当x=_________时其最小值为_________.类型二根据根式的非负性求字母7.若|3﹣a|0 则a+b的立方根是_____.a+则ab的值为________.8.若a b为实数且满足40-【答案】89.若,x y 为实数 且满足26||0x y -- 则2021x y ⎛⎫ ⎪⎝⎭的值是________.1030b += 则(),P a b --在______象限.【答案】二【分析】根据非负数的性质得到a b 的值 得到点P 的坐标 即可知道点P 所在的象限.【详解】解:根据题意得20a -= 30b +=2a ∴= 3b =-()2,3P ∴-∴点P 在第二象限故答案为:二.【点睛】本题考查了非负数的性质点的坐标掌握两个非负数的和为0则这两个非负数分别等于0是解题的关键.11.若a、b、c是∵ABC的三边长且a、b、c|b-12|+(c-13)2=0.(1)求出a、b、c的值.(2)∵ABC是直角三角形吗?请说明理由.)5a-+13;是直角三角形理由如下:22512+=22a b∴+=∴∵ABC是直角三角形.【点睛】本题考查二次根式的非负性、绝对值的非负性、平方的非负性、勾股定理的逆定理等知识是重要考点12.已知a b0b=(1)a=_______ b=______(2)把a b的值代下以下方程并求解关于x的方程()221a xb a++=-类型三两根式中的式子互为相反数题型130=则x的取值范围是______.【答案】4x=【分析】根据二次根式有意义的条件列出不等式组求解即可.【详解】根据题意得40 40 xx-≥⎧⎨-≥⎩①②解①得4x≥;解②得4x≤;∵4x=所以x的取值范围是4x=故答案为:4x=【点睛】本题考查的是二次根式有意义的条件掌握二次根式中的被开方数是非负数是解题的关键.146y=求x y的算术平方根________.【答案】6【分析】根据被开方数是非负数可得不等式组根据解不等式组可得答案.【详解】解:∵2020xx-≥⎧⎨-≥⎩∵22xx≤⎧⎨≥⎩即=2x;当=2x时y=-6xy=(-6)2=36.所以x y的算术平方根为6.【点睛】本题考查了二次根式有意义的条件利用被开方数是非负数得出不等式组是解题关键.15.已知a b都是实数2b=则b a的值为___________.【详解】解:16 m=220,160n n-20=4时40n+=不符合题意317.若y 3 则52x y +的平方根为 _____.【答案】4±【详解】由二次根式有意义可得2x = 代入得3y = 再求出52x y +即可得出52x y +的平方根.【解答】解:由二次根式有意义可得 20x -≥ 420x -≥解得2x =∵3y =把23x y ==,代入52x y +得 5216x y +=所以52x y +的平方根为4±.故答案为:4±.【点睛】本题主要考查了二次根式有意义的条件及平方根 解题的关键是利用二次根式有意义求出x 的值.18b+6 则a ﹣b 的立方根是_____.19.已知 那么x y =______.类型四 有理数无理数综合求字母20.阅读材料并解决下列问题:已知a 、b 是有理数 并且满足等式52b =a 求a 、b 的值.解:∵52b =a即5(2)b a =-∵2b ﹣a =5 ﹣a =23解得:a =﹣213,36b =(1)已知a 、b 是有理数 (1b -= 1 则a = b = .(2)已知x 、y 是有理数 并且满足等式x 2y +-x +18 求xy 的平方根.21.先阅读第(1)题的解法 再解答第(2)题.(1)已知ab 是有理数并且满足等式52b a=求a b 的值. 解:因为52b a = 所以5(2)b a =-+所以2523b aa -=⎧⎪⎨-=⎪⎩解得 a b =⎧⎨=⎩____ (2)已知x y 是有理数 并且满足等式2217x y -=- 求x y +的值.∵54x y =⎧⎨=⎩或54x y =-⎧⎨=⎩所以9x y +=或1x y +=-【点睛】此题考查了二元一次方程组和平方根的求解 理解题意列出方程组是解题的关键.22.先阅读下面材料 再解答问题:材料:已知a b 是有理数并且满足等式52b a =求a b的值. 解:∵52b a = ∵5(2)b a =- ∵a b 是有理数∵2523b a a -=⎧⎪⎨-=⎪⎩解得23136a b ⎧=-⎪⎪⎨⎪=⎪⎩ 问题:(1)已知a b 是有理数5a += 则=a ________ b =________.(2)已知x y 是有理数 并且满足等式795x y -=-+ 求x y 的值.23.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式2b =求a 、b 的值.解:因为2b =. 即 ()2b-a =所以22b-a 5-a 3,== 解得:216a -b 33==,(2)设x 、y 是有理数 并且满足2x 2y 17+=,求x+y 的值.24.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式5-a=2b +-a 求a 、b 的值. 解:因为5-a =2b +. 即5-a =(2b -a )+. 所以2b -a =5 -a =. 解得:a =- b =.(2)设x 、y 是有理数 并且满足x 2+y +2y =-4+17 求x +y 的值.【答案】1或-9 【详解】根据规律:等式左右两边的有理数部分和二次根式分别相同 建立方程 然后解方程即可. 解:因为x 2+y +2y =-4+17 所以(x 2+2y )+y =17-4所以x 2+2y =17 y =-4解得x =5 y =-4或x =-5 y =-4.所以x +y =1或x +y =-9.25.先阅读(1)的解法 再解答第(2)题:(1)已知a b 是有理数 并且满足等式2b=a +5- 求a b 的值;解:∵2b=a +5- ∵2b -a =5-即(2b-a=5-又∵a b为有理数∵2b-a也为有理数∵252b aa-=⎧⎨=-⎩解得232ab=-⎧⎪⎨=⎪⎩(2)已知m n是有理数且m n满足等式m+2n2-n+6)+15求)100n的立方根.。

专题01 : 16。1二次根式 - 人教版数学八年级下册

专题01 : 16。1二次根式 - 人教版数学八年级下册

专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤53.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥14.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣15.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1 6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣77.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<38.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=.12.如果y=,那么x+=.13.若+在实数范围内有意义,则实数x的取值范围是.14.中a的取值范围是.15.已知是正整数,则满足条件的n的最小值是.三、解答题(共5小题)16.若y=2++,求的值.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.18.已知y=++2020,求x2+y﹣3的值.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.20.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.【解答】解:A、,是二次根式,故此选项不合题意;B、,是二次根式,故此选项不合题意;C、,是二次根式,故此选项不合题意;D、,不是二次根式,故此选项符合题意;故选:D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.3.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥1【解答】解:根据题意,得:1﹣x≥0,解得:x≤1.故选:C.4.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣1【解答】解:由在实数范围内有意义,得1﹣x≥0.解得x≤1,故选:C.5.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1【解答】解:若式子有意义,则x≥0,且x﹣1≠0,解得:x≥0且x≠1.故选:D.6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣7【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.7.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<3【解答】解:∵=,又∵,∴,解得﹣3≤x≤3.故选:A.8.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.【解答】解:(A)1+x≥0,x≥﹣1,故x=﹣3不能使该二次根式有意义;(B)2x+5≥0,x≥﹣,故x=﹣3不能使该二次根式有意义;(C)3x﹣4≥0,x≥,故x=﹣3不能使该二次根式有意义;(D)4﹣x≥0,x≤4,故x=﹣3能使该二次根式有意义;故选:D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥【解答】解:根据二次根式的意义,被开方数3﹣2x≥0,解得x≤.故选:A.10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2【解答】解:由题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠1.所以x≥﹣2且x≠2,故选:C.二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=5或3.【解答】解:由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为:5或3.12.如果y=,那么x+=5.【解答】解:由题意得:,解得:x=3,则y=,x+=3+2=5,故答案为:5.13.若+在实数范围内有意义,则实数x的取值范围是x≥1且x≠3.【解答】解:由题意得:x﹣1≥0,且x﹣3≠0,解得:x≥1且x≠3,故答案为:x≥1且x≠3.14.中a的取值范围是a≥﹣1且a≠1.【解答】解:由题意,得a+1≥0且a﹣1≠0.解得a≥﹣1且a≠1.故答案是:a≥﹣1且a≠1.15.已知是正整数,则满足条件的n的最小值是2.【解答】解:是正整数,则2n是一个完全平方数,又2n=2×2=4,则2n是一个完全平方数,所以n的最小值是2.故答案为:2.三、解答题(共5小题)16.若y=2++,求的值.【解答】解:∵,∴x=2,∴y=,∴=+.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.【解答】解:由题意得:,解得:x+y=100,∴+=0,∴,解得:m=102,∴存在,m的值为102.18.已知y=++2020,求x2+y﹣3的值.【解答】解:由题意得,x2﹣4≥0,4﹣x2≥0,则x2﹣4=0,解得,x2=4,∴y=2020,则x2+y﹣3=4+2020﹣3=2021.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.【解答】解:(1)∵x﹣4的平方根为±2,∴x﹣4=4,∴x=8,∵x+2y+7的立方根是3,∴x+2y+7=27,∴y=6,∴x+y=14的平方根为±;(2)由题意得:,解得:a2=4,∴a=±2,∵a﹣2≠0,∴a≠2,∴a=﹣2,则b=﹣1,∴(a﹣b)3=(﹣2+1)3=﹣1.。

初中数学精品试题:八年级数学下册第一章《二次根式》基础测试

初中数学精品试题:八年级数学下册第一章《二次根式》基础测试

八年级数学下册第一章《二次根式》基础测试(总分:100分,时间:60分钟)一、选择题(共8小题,每小题3分,共24分)1.下列二次根式是最简二次根式的是( D )A B C D2.下列计算正确的是( A )A .=B =C .3+=D 2=-3.是同类二次根式的是( B )A B C D4.12a -,则a 的取值范围是( C )A .12a <B .12a >C .12a ≤D .12a ≥5.若实数m 、n 满足|3|0m - ,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( B )A .12B .15C .12或15D .166.A (a ,b )在( A ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知1m =+1n = C )A .9B .3±C .3 D8. 把代数式(1k -1k -移到根号内,那么移动并化简后的代数式为( C )A B C .D .二、填空题(共6小题,每小题4分,共24分)9.有意义的x 的取值范围是 .10.(22= .11.已知3a = 2b =()()226944a a b b -+-+的值是 .12.(填“>”“=”或“<”)13.实数a ,b 的结果是 .14.已知m 是实数,且m +1m-m 的值是 . 三、解答题(共6小题,每小题4分,共52分)15.计算(每小题3分,共12分)(1 (212;(3)((⨯ ; (4)- . 16.化简(每小题4分,共8分)(1; (217.(10分)已知2a =2b =(1)请分别求出22a b +,22a b -的值; (2)已知a 的整数部分为m ,小数部分为n ,请求出2m n -的值.18.(10分)观察下列等式:1; = 回答下列问题:(1(2+⋅⋅⋅ (3⋅⋅⋅.19.(本题有2小题,每小题6分,共12分)(1(2)已知1a =,求代数式 6543226109a a a a a a +++-+- 的值.。

新人教版初中数学八年级数学下册第一单元《二次根式》检测卷(包含答案解析)(3)

新人教版初中数学八年级数学下册第一单元《二次根式》检测卷(包含答案解析)(3)

一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间3. )AB C D4.( )A .B .C .D .无法确定 5.下列计算正确的是( ).A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.(a ﹣4)2=0 )A B . C D .7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列根式是最简二次根式的是( )A B C D9.当2a < )A .B .-C .D .-10.下列运算中错误的是( )A =B =C .=D-=11.已知,2那么a 应满足什么条件 ( ) A .a >0B .a≥0C .a =0D .a 任何实数 12.下列各式中,正确的是( ) A.2(9=B3=- C3=- D3=二、填空题13.x 的取值范围是____14ab ,那么2(2)b a +-的值是________. 15.若2<x <3|3|x -的正确结果是_____.16.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.17.已知b>0=_____.18.已知3y =,则xy 的值为__________.19.23()a -=______(a≠0),2-=______,1-=______.20.在实数范围内有意义,则x 的取值范围是______. 三、解答题21.先化简,再求值:(221111a a a++--)÷a ,其中a. 22.先化简,再求值:2232()111x x x x x x +÷---,其中1x =. 23.(1(2)解方程组321456x y x y +=⎧⎨-=⎩①②. 24.101120202-⎛⎫-+- ⎪⎝⎭. 25.计算题:(1- (226.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥) (3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意; C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】===解:原式4∵<<,34∴<<,748故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】===故选:B.【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.A解析:A【分析】满足三角形成立的条件,最后对三边求和即可.【详解】若,则周长为+若=,∴,此三角形不存在,∴这个三角形的周长为【点睛】本题考查等腰三角形的性质,涉及化简二次根式,熟练掌握等腰三角形的性质以及三角形成立的条件是解题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a、b的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030ab-=⎧⎨-=⎩,解得43ab=⎧⎨=⎩,3===,故选:A.【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.7.C解析:C【分析】先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.B解析:B【分析】利用最简二次根式定义判断即可.【详解】A=BC=,不是最简二次根式,该选项不符合题意;2=,不是最简二次根式,该选项不符合题意;D3故选:B.【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.B解析:B【分析】根据二次根式的性质即可化简.【详解】a<解:∵2-<∴a20∴-故选:B.【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.10.D【分析】根据二次根式的乘法法则对A 进行判断;根据二次根式的除法法则对B 进行判断;根据二次根式的加减法对C 、D 进行判断.【详解】解:A ,所以A 选项的计算正确;B=3,所以B 选项的计算正确;C 、原式=,所以C 选项的计算正确;D 、原式==,所以D 选项的计算错误;故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.B解析:B【分析】与a 的取值范围即可得到答案.【详解】 ∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 12.D解析:D【分析】根据二次根式的性质逐项判断即可.【详解】解:A 、2(3=,故本选项错误;B 3=,故本选项错误;CD 3=,故本选项正确.故选:D .【点睛】a =,2(0)a a =≥.二、填空题13.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵∴10x -≥,∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.14.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.15.【分析】根据二次根式的性质绝对值的性质先化简代数式再合并【详解】解:∵2<x <3∴|x ﹣2|=x ﹣2|3﹣x|=3﹣x 原式=|x ﹣2|+3﹣x =x ﹣2+3﹣x =1故答案为:1【点睛】此题考查化简求值解析:【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【详解】解:∵2<x <3,∴|x ﹣2|=x ﹣2,|3﹣x |=3﹣x ,原式=|x ﹣2|+3﹣x=x ﹣2+3﹣x=1.故答案为:1.【点睛】此题考查化简求值,整式的加法法则,正确掌握二次根式的性质,绝对值的性质是解题的关键.16.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.17.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键.18.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.19.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 20.【分析】根据二次根式的被开方数大于或等于0分式的分母不能为0即可得【详解】由二次根式的被开方数大于或等于0得:解得由分式的分母不能为0得:解得则x 的取值范围是故答案为:【点睛】本题考查了分式有意义的 解析:1x >【分析】根据二次根式的被开方数大于或等于0、分式的分母不能为0即可得.【详解】由二次根式的被开方数大于或等于0得:10x -≥,解得1≥x ,由分式的分母不能为0得:10x -≠,解得1x ≠,则x 的取值范围是1x >,故答案为:1x >.【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式和二次根式的概念是解题关键.三、解答题21.211a -,1 【分析】 将括号中的第一项分母分解因式,第二项提取−1,找出最简公分母,通分后利用同分母分式的加法法则计算,同时根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,合并约分后得到最简结果,然后将a 的值代入即可求出原式的值.【详解】 (221111a a a ++--)÷a =[(1)(1)(1)(1211)a a a a a a ++-+-+-]1a⨯ =21111()(1)a a a aa +-+--⨯ =211a -,当a =1121=-. 【点睛】 此题主要考查了分式的混合运算以及化简求值问题,二次根式的混合运算,选择正确的计算方法,首先进行通分降低了计算量是解决问题的关键.22.21x x -+,1【分析】先将括号内的异分母分式通分,除法化为乘法,计算乘法后将x的值代入计算即可.【详解】解:2223232(1)12 ()111(1)(1)1 x x x x x x x xx x x x x x x-+--+÷=⨯= ---+-+当1x=时,原式=211xx-==+.【点睛】此题考查分式化简求值,正确掌握分式的混合运算及分母有理化运算是解题的关键.23.(12+;(2)24xy=⎧⎨=⎩【分析】(1)先化简二次根式,再进行加减运算;(2)①+②×2得到x的值,再把x的值代入② 求出y的值即可.【详解】解:(1+-=+-2=+-2=.(2)321456x yx y+=⎧⎨-=⎩①②①+②×2得,13x=26解得,x=2把x=2代入②得,10-y=6解得,y=4∴原方程组的解为24xy=⎧⎨=⎩.【点睛】此题主要考查了二次根式的加减运算和解二元一次方程组,熟练掌握运算法则是解答此题的关键.24.【分析】利用二次根式的化简,去绝对值,负整数指数幂,零指数幂进行计算,再进行混合加减即可.【详解】11120202-⎛⎫+-⎪⎝⎭121=+-=.【点睛】本题考查二次根式的混合运算.掌握二次根式的化简,绝对值、负整数指数幂、零指数幂的意义是计算本题的关键.25.(1;(2)1【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后利用二次根式的乘除法则运算.【详解】解:(1=-=(2==1【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的化简及相关运算的运算法则.26.(1)①=;②=;③>;④>;(2)2a b+≥,证明见解析;(3)4.【分析】(1)①、②、③、④直接将a、b的值代入计算即可;(2)由2≥可得0a b-≥,最后移项即可说明;(3)当镜框为正方形时,周长最小,即然后根据正方形的面积求出边长即可解答.【详解】(1)①当2a =,2b =时,2a b +=2,则2a b +②当3a =,3b =时,2a b +=3,则2a b +③当4a =,1b =时,2a b +=2.5,则2a b +④当5a =,3b =时,2a b +=42a b + 故:①=,②=,③>,④>;(2)2a b +≥ 20≥,∴0a b -≥,整理得,2a b +≥; (3)当镜框为正方形时,周长最小∵镜框的面积为1∴镜框的边长为1,即周长为4.【点睛】 本题主要考查了二次根式的应用,确定出两个算式的大小关系并灵活运用这种关系成为解答本题的关键.。

(完整)人教版八年级下册数学第一章二次根式测试题

(完整)人教版八年级下册数学第一章二次根式测试题

2017—2018学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:_________ 分数:____________________注意事项1. 本试卷满分150分,考试时间120分钟。

2. 请将密封线内的项目填写清楚。

3. 请在密封线外答题。

一、选择题(每小题3分,共36分)1、如果•齐有意义,则a的取值范围是()A、a 0B、a 0 C a 3 D a 32、下列各式中一定是二次根式的是()aA 、~7B 、3 2m C、:x21 D、?3、如果是二次根式,那么x应满足的条件是()A. x 5B. x -C. x >5D. x < 52 2 2 24、当x=3时,在实数范围内没有意义的是()A. x 3B. 3 xC. x23D. . 3 x25、化简二次根式,(3)2 6得()A. 3. 6B. 3 6C. 18D. 67、下列各式计算正确的是()6、等式,(a 1)(1 a)F7?,^成立的条件是()A. a 1B. a 1C. 1<a 1D. 1 a 1A .— 2B . 2 212、如果数轴上表示a 、b 两个数的点都在原点的左侧,且 a 在b 的 左侧,则a b . (a b)2的值为()A . 2bB . 2bC . 2aD . 2a 二、填空题。

(每小题3分,共24分)13、 0.3)2 ______________ ; (2 . 5)2 ___________ 14、 二次根式p 1—有意义的条件是 __________ 。

Vx 315、 若 m<Q 则 |m| Um 2 Vm 3 = ________ 。

16、 _________________________________________________ 已知x 33x 2=-x x 3,则x 的取值范围是 ___________________________ 17、 若・2a 1与•. 4a 3的被开方数相同,则 a = __________ < 18、 2xy ? 8y __________ , 12? 27___________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年度第二学期阶段性测试题
八年级下册数学(第一章)
出题人: 分数:
注意事项
1. 本试卷满分150分,考试时间120分钟。

2. 请将密封线内的项目填写清楚。

3. 请在密封线外答题。

一、选择题(每小题3分,共36分) 1
a 的取值范围是(

A 、0a ≥
B 、0a ≤
C 、3a ≥
D 、3a ≤ 2、下列各式中一定是二次根式的是( )
A B 、12+x D
3x 应满足的条件是( ) A. 52
x = B. 52
x < C. x ≥52
D. x ≤52
4、当x=3时,在实数范围内没有意义的是( )
5得( )
A. - C. 18 D. 6
6= ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤ 7、下列各式计算正确的是( )
A.
==
C.
= D. =
8、若A = )
A. 23a +
B. 22(3)a +
C. 22(9)a +
D. 29a +
9、已知xy >0,化简二次根式 )
C. D. 10、下列各式中,一定能成立的是( )
A .3392-•+=-x x x
B .22)(a a =
C .1122-=+-x x x
D .22)5.2()5.2(=- 11、化简)22(28+-得( )
A .—2
B .22-
C .2
D . 224- 12、如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为2)(b a b a ++-( )
A .b 2-
B .b 2
C .a 2
D .a 2- 二、填空题。

(每小题3分,共24分)
13、=-2)3.0( ;=-2)52( 。

14、二次根式
3
1-x 有意义的条件是 。

15、若m<0,则332||m m m ++= 。

16、已知233x x +=-x 3+x ,则x 的取值范围是 。

17、若12+a 与34-a 的被开方数相同,则a = 。

18、=•y xy 82 ,=•2712 。

19、若2y =+,则x =_______ ,y =_________。

20、若35-=x ,则562++x x 的值为 。

三、解答题。

(第21至24每小题5分,第25至26小题,每小题10分,第27至29每小题12分,第30小题14分)
21、3222233--+ 22、)52453204(52+-
23、
2+ 24、 +-
25、若a=15+,b=15-,求a 2b+ab 2的值.
26、若1a b -=,ab =,求代数式(1)(1)a b +-的值。

27、若x ,y 是实数,且3
14114+-+-=x x y , 求)25()493
2
(3xy x xy x x +-+的值。

28、已知5x y +=,3x y •=,计算y x
x y
+的值。

29、实数a 在数轴上的位置如图所示,化简 2|2|816a a a -+-+
30、观察下列等式: ①;
②;

;……
回答下列问题:
(1)利用你观察到的规律,化简:
(2)计算:
12)
12)(12(1
21
21-=
-+-=
+23)
23)(23(2
32
31-=-+-=
+34)
34)(34(3
43
41-=-+-=
+11
321+10
31 (2)
313
212
11++
+++
++
+。

相关文档
最新文档