多工步搬运机械手设计

合集下载

搬运机械手设计范文

搬运机械手设计范文

搬运机械手设计范文
搬运机械手是一种能够代替人工搬运物体的机械装置。

它能够根据预
设程序,准确无误地完成物体的搬运任务,提高生产效率和工作安全性。

本文将对搬运机械手的设计进行阐述,包括结构设计、控制系统和安全性
设计等方面。

搬运机械手的结构设计是其基础,良好的结构设计能够保证机械手的
运行平稳、稳定和可靠。

首先,机械手的骨架需要具备足够的强度和刚度,以承受各种工况下的载荷。

其次,机械手的关节设计需要灵活、准确,以
达到最佳的运动效果。

同时,机械手的末端执行器设计要能够适应不同物
体的搬运需求,具备良好的抓取能力和准确的定位功能。

搬运机械手的安全性设计至关重要,它能够保证机械手的运行安全和
人员的人身安全。

首先,机械手需要具备自动停止功能,当检测到异常情
况时能够及时停止运行,避免发生意外。

其次,机械手需要具备防撞设计,能够避免与周围环境或物体的碰撞,减少损坏可能性。

此外,机械手的抓
取设备需要具备力控制功能,以避免因过大的抓取力导致物体或机械手的
损坏。

最后,机械手需要具备紧急停止按钮和安全门等人机交互设备,以
保障操作人员的安全。

综上所述,搬运机械手设计的关键要素包括结构设计、控制系统和安
全性设计等方面。

良好的设计能够确保机械手具备高效、稳定、可靠和安
全的搬运能力,满足不同搬运任务的需求。

随着科技的不断发展,搬运机
械手将有着更加广阔的应用前景和发展空间。

搬运机械手运动控制系统设计范本

搬运机械手运动控制系统设计范本

搬运机械手运动控制系统设计搬运机械手运动控制系统设计第一部分:题目设计要求。

一、搬运机械手功能示意图二、基本要求与参数本作业要求完成一种二指机械手的运动控制系统设计。

该机械手采用二指夹持结构,如图1所示,机械手实现对工件的夹持、搬运、放置等操作。

以夹持圆柱体为例,要求设计运动控制系统及控制流程。

机械手经过升降、左右回转、前后伸缩、夹紧及松开等动作完成工件从位置A 到B 的搬运工作,具体操作顺序:逆时针回转(机械手的初始位置在A 与B 之间)—>下降—>夹紧—>上升—>顺时针回转—>下降—>松开—>上升,机械手的工作臂都设有限位开关SQ i 。

A B 工SQ 1 SQ 2 SQ 3SQ 4SQ 5SQ 6夹松设计参数:(1)抓重:10Kg(2)最大工作半径:1500mm(3)运动参数:伸缩行程:0-1200mm;伸缩速度:80mm/s;升降行程:0-500mm;升降速度:50mm/s回转范围:0-1800控制器要求:(1)在PLC、单片机、PC微机或者DSP中任选其一;(2)具备回原点、手动单步操作及自动连续操作等基本功能。

三、工作量(1)驱动及传动方案的设计及部件的选择;(2)二指夹持机构的设计及计算;(3)总体控制方案及控制流程的设计;(4)设计说明书一份。

四、设计内容及说明(1)机械手工作臂及机身驱动部件的选择及设计,需设计出具体的驱动及传动方案,画出方案原理框图。

(2)末端夹持机构设计,该结构需保证抓取精度高,重复定位精度和运动稳定性好,并有足够的抓取能力。

设计应包括确定夹持方案、计算夹持范围、计算夹紧力及驱动力,完成夹持机构设计图。

(3)控制系统设计,包括确定控制方案、核心功能部件的选择、主要功能模块的实现原理、绘制控制流程框图。

第二部分:设计过程搬运机械手运动控制系统设计一机械手工作臂及机身驱动部件的选择及设计,需设计出具体的驱动及传动方案,画出方案原理框图。

搬运机械手设计范文

搬运机械手设计范文

搬运机械手设计范文搬运机械手是一种能够取代人工进行重物搬运的机器人设备。

它可以通过各种传感器和执行器来感知和操作环境中的物体,从而实现高效、精确和安全地搬运重物。

在工业生产领域中,搬运机械手已经广泛应用,因为它不仅能够提高生产效率,还能减少工人的劳动强度和避免工伤事故。

在设计搬运机械手时,需要考虑以下几个方面:1.功能需求:首先需要明确搬运机械手的功能需求,包括搬运重物的最大负荷、工作范围、运动速度、准确定位等。

这些功能需求将决定机械手的设计参数和性能指标。

2.结构设计:搬运机械手的结构设计包括机械臂、末端执行器和控制系统。

机械臂通常由多个关节组成,每个关节都可以通过电机和减速机驱动。

机械臂的结构要求具有足够的刚度和稳定性,以保证搬运任务的精度和稳定性。

末端执行器通常为夹爪或吸盘,可以根据需要进行更换或定制。

控制系统需要包括传感器、执行器和控制算法等,以实现对机械手的精确定位和运动控制。

3.传感器选择:搬运机械手需要使用各种传感器来感知环境中的物体和位置信息。

常用的传感器包括视觉传感器、力传感器、位移传感器等。

通过使用这些传感器,机械手可以实时获取物体的位置、重量和形状等信息,从而更好地适应不同的搬运任务。

4.控制算法:搬运机械手的控制算法需要实时处理传感器反馈的数据,并根据搬运任务的需求,计算出最优的运动控制指令。

这些算法可以使用机器学习、路径规划和运动控制等技术来实现。

控制算法的设计要考虑到机械手的动力学特性和物体搬运的约束条件,以确保高效、安全和精确的搬运操作。

5.安全设计:搬运机械手在工业生产过程中承担着较重的负荷,因此安全设计至关重要。

安全设计包括机械结构的强度和稳定性、电气系统的故障保护、安全门禁和急停装置等。

此外,机械手还需要与其他设备和人员进行安全交互,以防止意外碰撞和伤害。

总之,搬运机械手设计需要考虑到功能需求、结构设计、传感器选择、控制算法和安全设计等方面。

通过合理的设计和工艺选择,可以使机械手在工业生产中发挥更大的作用,提高生产效率和质量,减少工人劳动强度,实现智能化和自动化生产。

搬运机械手毕业设计

搬运机械手毕业设计

搬运机械手毕业设计摘要本文针对工业生产中搬运过程中的自动化需求,设计了一款搬运机械手。

该机械手能够自动完成物料搬运、定位和堆放的任务,提高了生产效率和工作安全性。

设计包括机械结构、控制系统和安全保护装置。

关键词:搬运机械手、自动化、物料搬运、机械结构、控制系统、安全保护装置1.引言随着工业化进程的加快,生产线上的物料搬运工作量越来越大,传统的手工搬运方式已经无法满足需求。

自动化的搬运机械手能够代替人工完成搬运任务,提高了生产效率和工作安全性。

因此,设计一款能够实现自动化搬运的机械手对于工业生产具有重要意义。

2.设计原则(1)功能全面:能够完成不同规格、不同材料的物料搬运任务;(2)精确定位:能够精确地将物料放置到指定位置,避免人工调整;(3)堆码能力:能够实现物料的堆码操作,提高存储密度;(4)安全性保护:具备必要的安全保护装置,避免意外情况发生。

3.机械结构设计机械结构是搬运机械手的关键部分,决定了机械手的动作能力和稳定性。

设计中采用了多关节机械手的结构,能够实现六个自由度的运动,适应复杂的搬运场景。

机械手采用轻质材料制造,以提高载重能力。

4.控制系统设计控制系统是搬运机械手的智能核心,决定了机械手的动作控制能力。

控制系统由硬件和软件两个部分组成。

硬件包括传感器,执行机构和控制器,软件包括运动控制算法和路径规划算法。

通过传感器对物料位置、重量和形状进行检测,控制器可以根据检测结果对机械手进行自适应控制,完成搬运任务。

5.安全保护装置设计工业生产中机械手搬运过程中存在一定的安全风险。

设计中引入了安全保护装置,包括红外线传感器和急停按钮。

红外线传感器能够检测到人员或障碍物的接近,触发警报或停机,防止意外发生。

急停按钮可以在紧急情况下立即关闭机械手,确保生产安全。

6.实验结果和分析通过实验,验证了搬运机械手的功能和性能。

机械手能够准确地捡起、移动和堆放物料,实现了自动化搬运。

同时,安全保护装置能够有效地保护工作人员的安全,预防意外事故的发生。

搬运机械手的设计和仿真

搬运机械手的设计和仿真

搬运机械手的设计和仿真搬运机械手是一种可以自动化地完成工业生产中物品搬运的机器人。

在工业自动化程度越来越高的今天,它成为了一个非常重要的设备。

在工业领域中,搬运机械手广泛应用于生产线、物流和仓储等场合,可以代替人工完成重复性、危险、繁琐的工作任务,提高工作效率和生产能力,减少损失和安全事故的发生。

搬运机械手分为多种类型,例如旋转臂式搬运机械手、平面式搬运机械手、升降框式搬运机械手等,每种机械手都有其独特的应用场合和设计特点。

例如,在生产线场合中,为了提高生产效率,要求机械手的搬运速度尽可能快,并且需要具有足够的灵活性和精度,能够协调好相互之间的运动,准确抓取和运输物品。

而在物流和仓储设备中,机械手面对的是不同形状、重量、尺寸的物品,需要根据具体情况设计适合的机械臂和抓取器,保证效率和精度。

搬运机械手的设计需要考虑到多个方面的因素,如运动控制、传动系统、力学与动力学和电子控制等方面。

在运动控制方面,需要设计合适的运动轨迹,使机器人每次搬运的动作能够有效地完成,在不同场合中需要选择合适的控制方法。

而在传动系统方面,需要选取合适的电机和传动方式,保证机械手的运动效率和精度。

在力学与动力学方面,则需要考虑机械手的耐用性和稳定性,以及机械手在运作过程中的力学特征和动力学特征,如速度和力的平衡等。

此外,在电子控制方面需要采用现代化的电子技术,包括传感器技术、电机控制技术等,使机械手具备可靠性与精准度。

在搬运机械手设计完成后,需要进行仿真验证,以确定机械手的动态特性和运动轨迹的正确性。

这样可以避免因安装错误或运动干扰等因素导致机械手动作出现不正常的情况,减少设计的风险和可靠性问题。

目前,常见的机械手仿真软件包括MATLAB、Simulink、ADAMS、SolidWorks等,其中ADAMS是一款功能强大的机械系统仿真软件,可以对机械手的运动、力学与动力学、碰撞检测等方面进行全面仿真,提高设计的可靠性和精度。

搬运机械手的设计

搬运机械手的设计

搬运机械手的设计首先是机械结构设计。

搬运机械手的机械结构需要具备稳定性、精确性和可靠性。

通常采用的结构包括支架结构、臂结构和夹具结构。

支架结构用来支撑机械手的整体,需要具备足够的强度和稳定性;臂结构用来实现机械手的运动,需要具备较高的精确性和灵活性;夹具结构用来夹取物品,需要具备较高的抓取力和适应性。

在设计过程中还需要考虑到机械手的尺寸、负载能力和工作半径等参数,以满足不同工作需求。

其次是电气控制设计。

搬运机械手的电气系统包括电源系统、控制系统和传感器系统。

电源系统为机械手提供所需的电力,需要考虑到电流、功率和电压等参数;控制系统用来控制机械手的运动和动作,需要采用适当的控制算法和控制器;传感器系统用来获取机械手的位置、负载和力矩等信息,需要选择适合的传感器类型和布置位置。

在设计过程中还需要考虑到电气元件的选型和布线,以保证机械手的稳定运行和安全性。

最后是软件控制设计。

搬运机械手的软件控制系统主要包括运动控制算法和任务调度算法。

运动控制算法用来使机械手实现各类运动,包括平移、旋转、抬升和倾斜等;任务调度算法用来分配机械手的各项任务,可以根据任务的紧急程度和优先级来调度机械手的工作。

在设计过程中还需要考虑到软件的编程和调试,以使机械手的运行更加准确和可靠。

综上所述,搬运机械手的设计涉及到机械结构设计、电气控制设计和软件控制设计等方面。

在设计过程中需要充分考虑到工作需求和规范要求,确保机械手的性能和安全性。

通过合理的设计和优化,可以提高搬运机械手的工作效率和可靠性,为生产过程带来更大的便利和效益。

搬运机械手设计解析

搬运机械手设计解析

搬运机械手设计解析搬运机械手是一种自动化设备,广泛应用于工业生产中的搬运、装卸、运输等作业。

它可以代替人工完成繁重、危险、精密等工作,提高生产效率和质量,减少人力成本和劳动强度。

本文将对搬运机械手的设计原理和结构进行解析。

搬运机械手的设计原理主要基于三个方面:机械学原理、控制原理和传感技术。

机械学原理是指机械手在运动过程中所涉及的运动学和力学原理。

控制原理则是指机械手的运动和动作控制方法,如PID控制、分级控制等。

传感技术则是指机械手感知周围环境和工作物体的能力,包括视觉传感、力传感和位置传感等。

搬运机械手的结构通常由机械臂、末端执行器和控制系统组成。

机械臂是机械手的关键组成部分,一般采用多关节传动机构,使机械手能够柔性、灵活地进行各种工作操作。

机械臂的关节通常采用电机和减速器传动,通过伺服控制实现准确的位置和力控制。

末端执行器则是机械手最终与工作物体接触和搬运的部分,通常有夹爪、磁吸盘等形式,根据具体工作要求选择相应的执行器。

控制系统则是机械手的大脑,通过编程和传感反馈实现对机械手的控制和监控。

在搬运机械手的设计过程中,需要考虑以下几个方面:负载能力、工作范围、运动速度和精度。

负载能力是指机械手能够承受的最大重量,决定了机械手能否完成特定的搬运任务。

工作范围是指机械手能够覆盖的空间范围,决定了机械手能否到达特定位置进行搬运操作。

运动速度是指机械手在搬运过程中的运动速度,快速的运动速度可以提高生产效率,但也需要考虑到安全性和运动平稳性。

精度则是指机械手的定位精度和力控制精度,决定了机械手能否准确地操纵工作物体。

另外,搬运机械手的安全性也是需要重视的。

机械手在工作过程中需要与人员和其他设备保持安全距离,避免碰撞和伤害。

因此,在搬运机械手的设计中需要考虑到安全防护措施,如传感器监测、紧急停止装置等。

总结起来,搬运机械手的设计解析主要涉及机械学原理、控制原理和传感技术。

它的结构由机械臂、末端执行器和控制系统组成,需要考虑负载能力、工作范围、运动速度和精度等因素。

八自由度搬运机械手的设计

八自由度搬运机械手的设计

八自由度搬运机械手的设计
简介
本文档旨在设计一种具有八自由度的搬运机械手,用于实现多种搬运任务的自动化操作。

设计要求
1. 具有八自由度的机械结构,可以实现多方向运动。

2. 轻量化设计,以实现高效能和灵活操作。

3. 具备足够的承载能力,能够搬运各种大小物体。

4. 采用先进的感知和控制技术,以实现精准的搬运操作。

5. 系统稳定可靠,能够长时间连续工作。

设计方案
1. 结构设计:
- 使用铝合金等轻质材料制作机械结构,以减少重量。

- 采用八自由度的机械臂设计,配置合理的关节和连杆。

- 设计可折叠式机械臂,以便于储存和运输。

2. 承载能力设计:
- 根据搬运任务的需求确定机械手的承载能力。

- 使用高强度材料制作机械手,以确保足够的承载能力。

3. 感知与控制技术:
- 配备传感器,如摄像头和力传感器,以获取物体位置和力信息。

- 使用先进的图像处理算法,对搬运物体进行识别和跟踪。

- 采用PID控制算法,实现机械手的精准运动控制。

4. 系统稳定性设计:
- 设计机械手的结构稳定性分析,确保在运动过程中不会出现
异常震动。

- 使用优质的电机和减速器,以提高系统稳定性和工作寿命。

结论
通过上述设计方案,可以实现一个具有八自由度的搬运机械手,满足多种搬运任务的要求。

该机械手具备轻量化设计、足够的承载
能力、先进的感知和控制技术以及系统稳定可靠的特点,可以提高
搬运任务的自动化程度和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:100122354(2000)0420020202多工步搬运机械手设计Ξ张 军1,冯志辉2(11天津市职工电子仪表工程学院,天津 300190;21天津市职工机电学院) 摘要:介绍了阀类控制器壳体加工中专用设备的结构、原理,精度设计、驱动及PL C控制系统设计等内容。

关键词:精度;基准;自定位 中图分类号:TH122 文献标识码:A1 引 言 随着工业自动化的普及和发展,控制器的需求量逐年增大。

壳体是阀类控制器上使用的通用型零件,该零件结构复杂,加工精度高,工艺过程长,壳体质量一直是影响控制器精度的主要指标之一。

由于原有壳体的加工设备陈旧,工艺落后等原因,严重影响了控制器的发展。

为了改变落后的生产状态,缓解日趋紧张的供求关系,我们研究开发了多工步搬运机械手。

在设备的整体构思,总体布局,机构功能,驱动和控制系统等方面,对原有设备进行了彻底改造,投入运行以来,产品质量稳定,生产率高,工艺成本降低,深受厂家欢迎。

2 工艺过程和总体布局 壳体是用牌号为HPb59-1的有色金属合金,经金属模压铸成型,毛坯精度高。

为了满足设计要求,通常首先以壳体外表面为工艺基准,加工壳体端面和定位止口,然后再以止口、端面及外壳凸台为定位基准,加工在壳体圆周上呈幅射状分布的5个径向阶梯孔。

径向孔系的加工需要由12个工步完成,其中孔1和孔2的加工过程为:钻孔—攻丝—钻小孔。

孔3,孔4和孔5的加工过程为:钻孔—攻丝。

多工步搬运机械手是加工壳体径向孔类的专用设备。

整机由框架、动力头、机械手、夹具、排屑机构,液压驱动和控制系统等七部分组成,其全部工艺过程和总体布局如图1所示。

整机呈口字型框架结构,框架上面的导轨上吊装着13个机械手,下面的工作台面上设有13个辅助定位夹具,其中第3、6、8和10号4个夹具的转位动作由转位液压缸和齿条、齿轮组成的传动副完成。

除零号夹具以外,其余12个夹具后面,分别安装有12个呈线性排列的动力头,进行钻孔和攻丝,动力头的进给和后退分别由装在分配轴上的12个凸轮来控制,分配轴的动力由主电机(1.5kW,1440r/ min)通过行星摆线减速器带动蜗轮和蜗杆机构提供,各动力头的初始位置可由各自的调整机构来完成。

为便于排屑,在动力头和夹具下面设有由计数器控制的排屑电机,经减速后启动传送带进行排屑,可在不停机的情况下,每加工5个工件自动地清理切屑。

图1 工艺过程和总体布局3 多工步搬运机械手设计311 结构组成和工作原理 我们设计的多工步搬运机械手是一个直角坐标型式的二自由度机械手,其职能符号和结构,原理如图2所示。

整机框架的导轨上安装有一个单杆双作用液压缸,缸体固定。

与活塞杆连接的滑块上刚性地吊装着13个机械手,当活塞杆运动时,可使13个机械手同步完成左右横移动,机械手的手臂是一个伸缩式复合液压缸,手臂缸的活塞杆是夹紧缸的缸体,夹紧02 零部件设计专题论文《机械设计》2000年4月№4Ξ收稿日期:1999208218; 修订日期:1999212220作者简介:张军(1947-),女,天津市职工电子仪表工程学院副教授。

该项目获国家科技进步奖。

缸的活塞杆作为传力机构驱动以销轴为铰链的内卡钳式4指抓手,完成工件的抓取和释放。

为了防止手臂在上升和下降运动中,由于受力不均产生的扭转影响工件的定位精度,在手臂活塞杆上装有导向螺钉,螺钉与端盖上的弯板滑槽配合进行轴向导向。

夹紧缸的下端盖的止口端面和外径分别作为工件加工时的第一和第二基准,13个机械手同时完成工件的自定位,夹紧,一起搬运工件进行工序间转换,生产率大为提高。

11连接螺钉 21升降液压缸 31弯板,导向螺钉 41夹紧液压缸51抓手 61铰链 71工件 81定位元件 91垫片 101球面垫圈111连接杆 121小活塞杆(传力机构) 131横移缸图2 职能符号和结构原理图312 机械手的精度设计 机械手的精度设计要求工件定位准确,抓取精度高,重复定位精度和运动稳定性好,并有足够的抓取能力。

由壳体零件的设计要求知道,阶梯径向孔系与壳体端面和定位止口中心线的平行度、垂直度和同轴度均有严格的精度要求(011mm )。

设计中我们取动力头回转中心线与夹具中心线之间的同轴度为0106mm ,动力头回转中心线与机械手中心线之间的垂直度为0103mm ,同时还对机械手的定位准确性提出了较高的要求。

遵循基准重合原则,加工中以夹紧缸下端盖上的止口端面和外径作为第一和第二基准面分别清除工件的三个自由度和两个自由度,由壳体外端面凸台在夹具中清除第六个自由度。

设计中选取夹具的定位元件为锥体结构,保证工件有较高的对中性,并确保工件在夹紧时能很好地进行自定位(工件外面类似球形)。

工件径向阶梯孔的周向位置精度由转位夹具予以保证。

工件安装在框架下工作台面的夹具中,机械手吊装在框架上面的滑轨上,每个工件都要经过机械手12次搬运才能完成全部工艺过程,所以机械手的抓取精度在设计中十分重要。

影响机械手抓取精度的因素很多,例如:框架上导轨面对框架下部工作台面的平行度T 1,夹具中定位元件中心线对工作台面的垂直度T 2,机械手的手部中心线对导轨安装面的垂直度T 3,机械手的手部中心线和夹具定位元件(略去工件中心线与定位元件中心线之间的同轴度误差)中心线的同轴度即抓手的抓取精度为封闭环T ∑,构成如图3所示尺寸链。

图3 尺寸链 设计中我们取抓手抓取精度T ∑=0.1mm ,则分配给各组成环的公差为:T 1=0.05/220,T 2=0.03/130,T 3=0.03/400,同时取夹紧缸下端止口定位端面与止口外径的垂直度为0103mm ,取止口定位外径与工件止口内径的配合尺寸<44A 11/g8,即:孔的尺寸为<44A 11(+0.48+0.32),外径即相当于轴的尺寸为<44g 8(-0.009-0.048)则可以计算出最大配合间隙为01528mm ,最小配合间隙为01329mm ,均能满足抓取精度要求。

机械手臂部复合液压缸中配合精度的设计,全部参照液压缸的设计要求确定。

由于12个机械手固定吊装在横移缸活塞杆的滑块上,各机械手之间的设计精度取±0.03mm ,横移缸采用传感器和机械挡块作为定位系统,机械手的运动速度不高(<30cm/s ),所以重复定位精度可达±0.02mm ,另外横移液压缸端部由于采用缓冲装置,使机械手运动平稳性也得到了可靠的保证。

机械手的抓取能力可参照钳爪式手部的有关公式,结合机械手的几何参数进行计算。

由于壳体重量较轻(≤2kg ),夹紧缸内径d =40mm ,所以在液压驱动系统中有足够大的夹紧力。

4 机械手的驱动系统设计 机械手的驱动系统采用液压方式,它具有在同等输出功率下传动装置体积小、重量轻、运动平稳、动态性能好等特点,13个机械手的左右横移,上升和下降及夹紧和松开等动作及4个自动转位夹具的回转运动,分别采用由方向阀和节流阀控制的18个(下转第30页)12《机械设计》2000年4月№4专题论文零部件设计4 液压机械无级传动工作 特性的试验验证 二段式液压机械无级传动装置经台架试验,其台架试验无级调速特性曲线如图5所示,其台架试验效率特性曲线如图6所示。

二段式液压机械无级传动装置台架试验中最大的传递功率达到了所选液压元件所能传递功率的3倍。

图5 二段式液压机械无级传动台架试验无级调速特性曲线 比较图3和图5,图4和图6可知,试验结果与理论分析曲线比较吻合,在工况转换时系统工作平稳,输出转速基本成无级线性变化,达到了无级调速的目的;系统具有较高的传动效率,且高效率范围较宽,与纯液压传动相比,由于溶入了高效率的机械路功率流,不但最高效率得到了显著的提高,更重要的是,传动效率在全程范围内明显高于纯液压传动,从而可以显著地降低传动装置的功率损失。

图6 二段式液压机械无级传动台架试验效率特性曲线5 结论 多段液压机械无级传动是一项应用于车辆无级传动领域的新技术,具有可控的无级调速特性、以小功率的液压元件传递大功率特性和较高的传动效率。

参考文献[1] 刘修骥.车辆传动系统分析[M ]1北京:国防工业出版社,1998.[2] 胡纪滨.高效液压机械连续无级传动理论分析和试验研究[D ].北京理工大学硕士论文,1995.[3] Yuan Shihua ,Hu Jibin.The research on the efficiency of multi -range hydro -mechanical transmission[J ].Journal of Beijing In 2stitute of Technology ,1998.(上接第21页)液压缸驱动,全部执行元件由一个4kW 的6级电动机带动一个流量为24l/min 的单级叶片泵供油,使驱动系统的造价大幅度降低。

5 机械手的PL C 控制系统设计 在多工步搬运机械手的控制系统中,我们采用了PLC 技术,选用霍尔传感器作为主令检测信号,使用日本立石公司生产的C40P 作为控制器主体。

常用PLC 梯形图逻辑设计方法较多,设计中我们采用流程图法,按照零件加工过程设计出控制系统流程图如图4所示。

一般控制系统都是由若干个稳定工作状态组成,每个工作状态是由于接受了某个切换主令信号而建立的。

各个工作状态用一个辅助继电器进行区分,辅助继电器的状态由切换主令信号来控制,这些切换主令信号分别来自按钮、传感器、定时器和计数器。

辅助继电器同时又是执行元件的输入变量。

当控制系统的输入主令信号和执行元件确定以后,将主令信号与各自工作状态的约束条件,分别代入相应的辅助继电器逻辑方程和执行元件的逻辑方程,即可完成自动工作循环的逻辑控制。

最后再考虑手动控制系统及自动循环与手动控制之间的互锁要求,即完成了全部控制系统的逻辑设计。

5 结束语 由于多工步搬运机械手主机采用口字型框架结构,13个机械手、夹具、动力头在主机上、下、侧面线性排列,使设备整体结构紧凑,占地面积小,并有条件采用卧式凸轮分配轴机构对动力头进行集中控制,18个液压缸采用一个泵站供油,中间环节少,节省能源,使设备总成本降低。

机械手采用自定位夹03 机械传动专题论文《机械设计》2000年4月№4文章编号:100122354(2000)0420031203基于对象封装的参数引用技术Ξ凌 云1,马玉林1,姬舒平1,周 岩2,周洪玉2(1.哈尔滨工业大学现代生产技术中心,黑龙江哈尔滨 150001 21哈尔滨理工大学机械动力学院) 摘要:采用面向对象的封装思想,提出了一种智能CAD系统中用于封装零部件和特征的技术。

通过定义零部件或特征设计接口,实现了自顶向下的设计过程。

关键词:参数化;面向对象;自顶向下设计 中图分类号:TP391172 文献标识码:A 在面向对象的设计方法中设计过程是自顶向下实现的。

相关文档
最新文档