高中数学知识应用竞赛试题及参考答案.doc

合集下载

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。

以下是一些高中数学竞赛赛题的精选和解答。

1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。

解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。

由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。

2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。

解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。

sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。

3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。

给定P(n)+Q(n)=n,求最小的n。

解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。

当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。

4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。

解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。

5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。

高中数学知识应用竞赛试题及参考答案

高中数学知识应用竞赛试题及参考答案

高中数学知识应用竞赛试题及参考答案试题1、(满分20分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前没行一段距离才能停住。

我们称这段距离为“刹车距离”。

刹车距离是分析事故的一个重要的因素。

在一个限速为40千米/时的路段上,先后有A、B两辆汽车发生交通事故。

事故后,交通警察现场测得A车的刹车距离超过12米,不足15米,B 车的刹车距离超过11米,不足12米。

又知A、B两种车型的刹车距离S(米)与车速x(千米/时)之间有如下关系:如果仅仅考虑汽车的车速因素,哪辆车应负责任?2.(满分20分)北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小晰蜴体长15cm,体重15g,问:当小晰蜴长到体长为20cm时,它的体重大约是多少(选择答案:20g,25g,35g,40g)?尝试用数学分析出合理的解答。

3. (满分20分)受日月的引力,海水会发生涨落,这种现象叫做潮汐。

在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。

下面是某港口顺某季节每天的时间与水深关系表:(1)请在坐标纸上,根据表中的数据,用连续曲线描出时间与水深关系的函数图像;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5的安全间隙(船底与洋底的距离),问该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?4.(满分20分)2000年末,某商家迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾方式,即顾客在店内花钱满100元(这100元可以是现金,也可是奖励券,或二者合计),就送20元奖励券;满200元,就送40元奖励券,满300元,就送60元奖励券;...。

当日,花钱最多的一顾客用现金70000元,如果按照酬宾方式,他最多能得到多少优惠呢?相当于商家打了几折销售?5.(满分20分)某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案1. 已知函数 \( f(x) = x^3 - 3x^2 + 2x \),求 \( f(x) \) 在区间 \([0, 3]\) 上的最大值和最小值。

答案:首先求导数 \( f'(x) = 3x^2 - 6x + 2 \),令 \( f'(x) = 0 \) 得 \( x = 1 \) 或 \( x = \frac{2}{3} \)。

计算 \( f(0) = 0 \),\( f(1) = 0 \),\( f(\frac{2}{3}) = \frac{2}{27} \),\( f(3) = 6 \)。

因此,最大值为 6,最小值为 0。

2. 计算极限 \( \lim_{x \to 0} \frac{e^x - \cos x}{x^2} \)。

答案:使用洛必达法则,首先求导得到 \( \frac{e^x + \sinx}{2x} \),再次求导得到 \( \frac{e^x + \cos x}{2} \)。

当 \( x \to 0 \) 时,极限为 \( \frac{1}{2} \)。

3. 证明不等式 \( \frac{1}{n+1} + \frac{1}{n+2} + \cdots +\frac{1}{2n} \geq \frac{1}{2} \ln 2 \) 对所有正整数 \( n \) 成立。

答案:利用调和级数的性质,将不等式左边的和表示为\( \sum_{k=1}^{n} \frac{1}{n+k} \)。

通过放缩和积分估计,可以证明该不等式成立。

4. 已知三角形 \( ABC \) 的内角 \( A, B, C \) 满足 \( A + B +C = \pi \),且 \( \sin A + \sin B + \sin C =\frac{3\sqrt{3}}{2} \),求 \( \cos A + \cos B + \cos C \) 的值。

答案:利用三角恒等式 \( \sin^2 x + \cos^2 x = 1 \) 和\( \sin x \) 的和为 \( \frac{3\sqrt{3}}{2} \),通过平方和展开,可以求得 \( \cos A + \cos B + \cos C = -\frac{3}{2} \)。

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案

高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。

A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。

A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。

商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。

共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。

边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。

9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。

10. 解不等式:|x + 2| + |x - 3| > 4。

四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。

五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。

证明:s =2r*sin(π/n)。

高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。

第十五届北京高中数学知识应用竞赛决赛试题和参考答案

第十五届北京高中数学知识应用竞赛决赛试题和参考答案
曩 3》3 4
(1)请你根据截图内的信息,判断这个结论
年 汛0
是否正确,并给出说明. (2)如果这个结论不正确,请你通过计算得 出最佳组合. 解答(1)这个结论是错误的.根据三年期 的利率5%,可以算出两个三年整存整取存款组 合的本利和为:10000(1+3×5%)2=13225. oo元.这个数值比程序给出的结果要好,这说 明程序的结论是错误的.
注意到S。=SE+S,所以
S(z—zD)一SE(xD--3L"E).
由此可得
z一——'一。
SDzD—SEzE
将前面分析的结果代入这个式子,化简后
如果月牙的重心位于月牙的内圆弧的E点,
32=r--r2cosO=r(1—2cosO),
一r

2cosO(O--sinOcosO) ,r--2(0--sinOcosO)。
46
数学通报
2012年
第5l卷
第5期
第十五届北京高中数学知识应用
竞赛决赛试题和参考答案
2012年3月25日
1.(满分16分)2011年国庆期间,上海新世 界购物中心策划出一套“积点购物”营销方案.即 在活动期间,商品的售价按照一定的比率全部折 算成积点,这次全场商品共分为A、B、C三类, 一件A类商品的售价(元)与折算成的点数比是 l:1,一件B类商品的售价(元)与折算成的点 数比是1:1.5,一件C类商品的售价(元)与折 算成的点数比是1:1.9.顾客选定商品后,累 计积点.顾客按每满500个积点付200元的方式 付款.如果积点a不是500的整数倍,口=500b +f,其中b为正整数,o<c<500.这时有两种 付款方式供选择.第一种付款方式是按b+1个 500点支付200(b+1)元,剩余的500一f点可与 再继续购物的积点合用;第二种付款方式是支付 200b+f元.无论哪种付款方式,顾客均在积点 购物中得到了优惠. (1)请你算一算,当每一类商品的积点都是 500的整数倍时,顾客分别从这三类商品中能得 到相当于多少折的优惠? (2)有一位顾客,想买一双靴子、一件呢外 套和一条牛仔裤,靴子原价1499元,是A类商 品;呢外套原价899元,是B类商品;牛仔裤 原价699元,是C类商品.正当她要掏钱按第一 种付款方式付款时,一位“黄牛”走过来说:“这 样做,你还要绞尽脑汁处理剩余的积点,不如直 接按A类4.2折、B类6.2折,C类7.8折将货

高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。

下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。

一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。

若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。

那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。

同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。

试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。

求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。

解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。

第十四届北京高中数学知识应用竞赛初赛试题及参考解答

第十四届北京高中数学知识应用竞赛初赛试题及参考解答
中 学 生 数 学 ・ 0 1 8月 上 ・ 4 3 ( 中 ) 21年 第 2期 高
. j 1

第 十 四 届 北 京 高 中 数 学 知 识 应 用 竞 赛 初 赛 试 题 及 参 考 解 答


用 与


速 度 拍 摄 足 球 比赛 画 面 . 们 亲 呢 地 称 它 为 “ 猫 ” 这 人 飞 , 是 近 几 年 使 用 的 一 项新 技 术 , 使 世 界 杯更 为 生 动 , 它 在 刚 闭 幕 的 亚 运 会 上 也 使 用 了这 项 技 术 . 种 摄 影 技 术 这 是 靠 四根 钢 索 协 调 动 作 来 完 成 的 , 术 关 键 是 建 立 协 技 调牵引 3 立体的 比 小 包 装 的 合 算 .如 某 种 品 牌 的 牙 大 棱 膏 , 量 3 的 每 支 2.0元 / , 量 1 0克 的 每 支 质 O克 5 支 质 2
( 满分 2 O分 ) 们 常 常 会 发 现 在 商 店 里 买 同 一 我
85 . 0元 .
行 比较 . 说 明 取 舍 数 据 的原 因 ; 并 ( ) 这些 学 校 给 出一 个 排 名 顺 序 . 说 明 你 的排 2对 应
名 原 则 和方 法 .
座 率 比较 低 , 造成 空 间 的 浪 费 . 导 致 这 种 浪 费 的 主要 而
原 因 就 是 那 里 的过 道 太 窄 , 利 于 人 的 流 动 . 为 合 适 不 较 的过道宽度在 08 . m一 1 2 之 间 . .m 如 果 可 以适 当增 减 桌 椅 , 么 , 何 摆 放 座 椅 , 那 如 使 得 人 员 的 容 纳 量 与 原 来 相 当 , 时 提 高 通 道 的 通 畅 程 同 度 , 出你 的 改进 方 案 , 明理 由 . 给 说

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识应用竞赛试题及参考答案试题1、(满分汽车在行驶中,由于惯性的作用,刹车后还要继续向前没行一段距离才能停住。

我们称这段距离为“刹车距离”。

刹车距离是分析事故的一个重要的因素。

在一个限速为40千米/时的路段上,先后有A、B 两辆汽车发生交通事故。

事故后,交通警察现场测得A车的刹车距离超过12米,不足15米,B车的刹车距离超过11米,不足12米。

又知A、B两种车型的刹车距离S(米)与车速x(千米/时)之间有如下关系:如果仅仅考虑汽车的车速因素,哪辆车应负责任?2.(满分北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小晰蜴体长15cm,体重15g,问:当小晰蜴长到体长为时,它的体重大约是多少(选择答案:25g,35g,40g)?尝试用数学分析出合理的解答。

3. (满分受日月的引力,海水会发生涨落,这种现象叫做潮汐。

在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。

下面是某港口顺某季节每天的时间与水深关系表:时刻水深(米)时刻水深(米)时刻水深(米)0:00 5.0 8:00 3.1 16:00 7.41:00 6.2 9:00 2.5 17:00 6.92:00 7.1 10:00 2.4 18:00 5.93:00 7.5 11:00 3.5 19:00 4.44:00 7.3 12:00 4.4 0 3.35:00 6.5 13:00 5.6 21:00 2.56:00 5.3 14:00 6.7 22:00 2.77:00 4.1 15:00 7.2 23:00 3.8(1)请在坐标纸上,根据表中的数据,用连续曲线描出时间与水深关系的函数图像;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5的安全间隙(船底与洋底的距离),问该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?4.(满分末,某商家迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾方式,即顾客在店内花钱满100元(这100元可以是现金,也可是奖励券,或二者合计),就送励券;满,就送40元奖励券,满300元,就送60元奖励券;...。

当日,花钱最多的一顾客用现金70000元,如果按照酬宾方式,他最多能得到多少优惠呢?相当于商家打了几折销售?5.(满分某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班。

情况如下:①展览大厅是长方形,内设均匀颁的m×n个长方形展区,如图所示(下图是一个3×4个展区的示意图)。

在展厅中,展览的书画被挂在每个展区的外墙上,参观者在通道上浏览书画。

②保安员站在固定的位置上,不允许转身,只能监视他的左右两侧和正前方,形如“T”形的区域。

且一个保安员的正前方不安排其它保安员。

③不考虑保安员的轮岗、换班问题。

④展口的安全意味着每一个展区的四面外墙都在保安员的监视范围内。

问题:(1)对于如上图所示的展厅中,最少需要几个保安员能使展品安全?在图中标明保安员的位置(不要求证明)。

(2)假如展要有n×m个展区,最少需要多少个保安员能使展品安全?请证明你的结论。

竞赛参考答案1.解法一:由题意得这两辆汽车的刹车距离分别满足如下的关系式:12<<15,11<<12,分别求解这两个不等式,得30<<<35,12<<<<45.可见,A车无责任,B车应付责任。

解法二:如果==40km/h,则可以算得==10m。

由于A车实际刹车距离没有超过它按限速行驶的刹车距离=而B车实际刹车距离超过了它按限速行驶时的刹车距离=10m。

可见A车无责任,B车应付责任。

2.解:假设小晰蜴从15cm长到,体形是相似的。

这时晰蜴的体重正比于它的体积,而体积与体长的立方成正比。

记体长为l的晰蜴的体重为,因此有合理的答案应该是35g。

3.解:(1)描点作图,设x表示时间,y表示水深。

(2)由题目条件,水深至少为5.5米时才能保证货船驶入港口的安全。

为此在上图中做一条y=5.5的水平直线a。

图象在a止方时,其对应的x范围为货船驶入港口的安全时间段,从图中可以看出,这个时间段约为0:30到5:40分,或13:00到18:10分钟左右的偏差可以算对),在港口停留的时间大约为5小时。

也可以用线性插值方法,在已知点中,若相邻两点在直线a的异侧,设加在它们中间且过直线a的点与它们共线。

于是利用点(0,5)和(1,6.2),得=(5.5-5)/(6.2-5)=0.417,对应的时间为0:25;利用点(5,6.5)和(6,5.3),得=5.83,对应的时间为5:50。

由此得到第一个满足条件的时间段约为0:25-5:50。

同理,利用点(12,4.4)和(13,5.6),得=12.92,对应的时间为12:55;利用点(18,5.9)和(19,4.4),得=18.27,对应的时间为18:16。

由此得到第二个满足条件的时间段约为12:55-18:16。

(3)2:00时水深为7.1米,船需要的安全水深随着卸货时间的变化公式为:y=5.5-0.3(x-2);其中2<x<5.83,此处利用了插值的结果。

在上面的函数图象中画出该图象,看出与原图象的交点大约在7:00左右(有10分钟左右上午偏差可以算正确),故知在7:00以前该货船一定要离开码头驶到较深的安全水域。

注:此处也可利用(6,5.3),(7,4.1)做线性插值,得y=-1.2x+12.5与y=5.5-0.(x-2),联立可求得x=7.1,即7:06;若利用(7,4.1),(8,3.1)做线性插值,得y=-x+11.1与y=5.5-0.3(x-2)联立可求得x=7,即7:00.这些做法与看图得到的结果一致。

4.解:购物价值=所用人民币值+优惠值,将最多购物价值记作。

按下列方法购物第一次用现金购物70000元,获得奖励券70000×12%=14000(元);第二次用现金购物14000元,获得奖励券14000×2800(元);第三次用现金购物2800元,获得奖励券2800×560(元);第四次用现金购物500元,获得奖励券500×100(元);第五次用现金购物100元,获得奖励券100×);第六次用现金购物80元,获得奖励券80(60+获得奖励券0元。

至此,现金及奖励券全部用完,共计购物(记作a)a=70000+14000+2800+500+100+80=87480(元)。

而=80。

018%,近似于八折。

下面证明=a.设分k次将70000花掉,第i次购物获得的奖励券为元,剩下的钱为元(不包括第i次获得的奖励券)。

则0≤≤,并可依次得=(70000-)14000;=(7000-)[(7000-) -]70000 70000--;=70000 70000 -(2-+{[70000-)-]-}=70000 70000 +70000 ---;一般地=70000 70000 +...+70000 --···--,即<70000 [++···+]<17500。

则总共购物价值为70000+<70000+17500=87500.即=87480元。

接近八折。

5.解:(1)对如图所示的3×4个展区,至少要5个保安员才能保证展览的书画是安全的。

保安员站位的方案有多种,其中一个如下图所示:(2)对n×m个展区,至少要m+n-2个保安员才能保证展览的书画是安全的。

证明:我们把模型进行抽象,把n×m 个展区抽象成一个n×m“格阵”,它有n+m+2条边(对应待监视的走廊),且用字母标记如下:由于保安员监视范围是“T”型区域,所以称保安员的位置对庆的“格隈”中的格点为“T形点。

”这样,我们把一个实际问题转化为一个数学模型:在n×m“格阵”中至少取几个“T”形点能够用这些T 形区域覆盖n×m“格阵”的全部n+m+2条边。

首先,“T”型点放在n×m“格阵”的外边框的格点上才能发挥最大作用,覆盖两条边。

否则,如果在中间某一格点处放一“T”形点P,那么这一“T”形点P的另一边的一部分,而另一部分还需要另外的“T”形点去覆盖,这样P“T”形点相当于只覆盖了一条边。

此外,在n×m“格阵”的边界格点上,当有了一个“T”形点时,如果在此边界上再放入第二个,它所在的边界已不需要它覆盖,那么这个“T”形点相当于覆盖了一条边。

由于n×m“格阵”只有4条边界,所以“T”形点多于4个时,其中4个覆盖两条边,其余的只相当于覆盖一条边。

因为这“其余的”不是被放在中间的格点上,就是被放在已有一个“T”形点的边界上,n×m“格阵”共有m+n+2条边,所以至少需“T”形点(m+n+2)-4个,即m+n-2个。

另外,也的确有如下的办法用m+n-2个“T”形点控制n×m“格阵”的m+n+2条边。

在处放4个“T”形点,它们可以控制8条边。

再在,这n-3个位置上放n-3个“T”形点,它们可以覆盖不同于前面的n-3条横向边。

再在,这n-3个位置上放m-3个“T”形点,它们可以覆盖不同于前面的m-3条纵向边。

总计覆盖了8+(n-3)+(m-3)条不同的的边,也就是整个n×m“格阵”。

相关文档
最新文档