学长福利——电动汽车电机驱动控制技术的研究现状与其发展趋势

合集下载

论文资料 电动汽车电驱动系统发展趋势

论文资料 电动汽车电驱动系统发展趋势

电动汽车电驱动系统发展趋势一、引言随着环保和能源问题的日益严重,电动汽车在全球范围内得到了广泛的关注。

电驱动系统作为电动汽车的核心组成部分,其发展趋势和技术走向对电动汽车的发展具有重要影响。

本文将从系统高效化、电机高压化、高速化电机、电磁兼容性优化、集成化驱动系统、智能化控制策略等方面,对电动汽车电驱动系统的发展趋势进行深入探讨。

二、系统高效化为了提高电动汽车的续航里程和降低能源消耗,电驱动系统的系统高效化成为了一个重要的研究方向。

通过优化电机、控制器和传动系统等部件的设计,提高整个驱动系统的效率,是电驱动系统未来的发展趋势。

三、电机高压化随着电力电子器件的发展,电机控制器和驱动电机的高压化成为了一种趋势。

采用高压电力电子器件,可以降低内阻和损耗,提高功率密度和效率。

同时,高压电机还可以减小电机体积和质量,为电动汽车的轻量化设计提供了有利条件。

四、高速化电机为了提高电动汽车的动力性能和加速能力,高速化电机成为了一个重要的研究方向。

高速电机具有较小的转动惯量和较高的响应速度,可以提高电动汽车的加速性能和行驶速度。

但是,高速电机需要解决一系列技术难题,如机械强度、冷却方式、轴承结构等,以保证其可靠性和稳定性。

五、电磁兼容性优化电动汽车的电驱动系统需要与其它电子设备协同工作,因此电磁兼容性成为了电驱动系统的一个重要问题。

为了提高电驱动系统的性能和可靠性,需要对电磁兼容性进行优化。

具体措施包括采用屏蔽、滤波、接地等手段,降低电磁干扰对电驱动系统的影响。

六、集成化驱动系统随着电动汽车设计的紧凑化和轻量化,集成化驱动系统成为了电驱动系统的一个重要趋势。

集成化驱动系统将电机、控制器和传动系统等部件集成在一起,实现紧凑设计和轻量化。

这不仅可以提高电动汽车的性能和可靠性,还可以降低成本和提高生产效率。

七、智能化控制策略智能化控制策略是电驱动系统的另一个重要趋势。

通过采用先进的控制算法和传感器技术,可以实现电驱动系统的智能化控制。

电动汽车电力驱动系统的研究现状与发展趋势

电动汽车电力驱动系统的研究现状与发展趋势

电动汽车电力驱动系统的研究现状与发展趋势电动汽车的出现对环境保护和能源消耗的优化起到了至关重要的作用。

堵塞的城市道路因电动汽车的出现更加环保和清静,消费的能源也比传统汽车更为节约。

然而,电动汽车的更多优化需要我们在电力驱动系统方面作出更多的努力。

现今的电动汽车主流驱动系统大多是电池与电动马达的组合,电池负责提供电能以及电能的存储,电动马达则将电能转化为动能,推动汽车的运动。

这一模式在实现无排放的同时,也提高了电动汽车的能效性,然而其存在着一些问题。

例如,电池寿命与电能密度的问题、电池的成本与功率输出的问题以及驱动系统在实际工况下的表现与寿命问题等。

因此,为更好地解决现阶段电动汽车的驱动问题,需要在电力驱动系统方面研究新的技术与方案。

一种新型的电力驱动系统是基于电能储存元件的驱动系统。

这种系统通过高温熔盐电池实现热电联供,将低品质的电池电能转化为高品质、高温、高压的电池电能,提高电能密度和电池的使用寿命。

这个新型的解决方案能够克服电池寿命短、电能密度低的缺陷,有效提高了电动汽车电池系统的稳定性和可靠性。

然而这种技术实际还处于实验阶段,需要更多的实验与验证来获得更多的技术成熟度,才能应用于实际生产之中。

另一个值得关注的技术是液态电池,它可以对传统的固态电池进行优化。

该技术的特点是能够将电池包裹在保温材料之中,从而达到保温效果,可以更好地对电池进行温度控制,延长电池使用寿命同时还有助于提高电能密度。

同时由于液态电池的输入和输出电导率大,电池的功率输出更为稳定。

这一方面是使液态电池具有更高的能效性,另一方面又使得其能够在电气系统方面更好的支持汽车车身系统的服役。

目前,液态电池几乎被用在了所有电力发生器中,其适用的使用条件已经非常成熟。

总的来说,在电动汽车领域,驱动技术的发展趋势是更加灵活、智能和便于保养的,凭借高性能的电驱技术、更低的成本和更完善的汽车系统解决方案。

通过纵观电动汽车电力驱动系统发展的历程,也明白这一过程是一项漫长的迭代与升级,同时,它也必须关注庞大的技术生态,并承担起消费者、制造商和公共机构的责任。

简述新能源汽车驱动电机发展的趋势

简述新能源汽车驱动电机发展的趋势

新能源汽车驱动电机发展的趋势主要有以下几个方面:
1. 高效化:随着能源危机和环保问题的日益严重,提高驱动电机的效率成为了新能源汽车发展的重要方向。

未来驱动电机将更加注重高效、节能和环保。

2. 小型化:为了满足新能源汽车空间紧凑、轻量化的需求,驱动电机将向小型化方向发展。

小型化的驱动电机不仅可以降低车辆的自重,还可以提高车辆的动力性能和续航里程。

3.集成化:随着汽车电子技术的不断发展,驱动电机与控制系统的集成度将不断提高。

这种集成化设计可以降低系统复杂度、提高系统稳定性和可靠性,并有助于实现更好的节能和环保效果。

4.智能化:智能化是新能源汽车发展的另一个重要方向。

未来驱动电机将与车辆的其他电子系统实现高度集成,实现智能控制和优化,提高车辆的整体性能和竞争力。

5.多元化:随着新能源汽车市场的不断扩大和技术的不断进步,驱动电机的种类和应用范围也将不断扩大。

未来驱动电机将涵盖纯电动、混合动力、燃料电池等多种类型,满足不同类型新能源汽车的需求。

总之,未来新能源汽车驱动电机的发展趋势将是高效化、小型化、集成化、智能化和多元化。

这些趋势将推动新能源汽车技术不断向前发展,为汽车产业带来更加美好的未来。

我国电动汽车的研究现状及发展趋势

我国电动汽车的研究现状及发展趋势

我国电动汽车的研究现状及发展趋势随着环境保护意识的提高和国家政策的支持,电动汽车作为清洁能源汽车受到了越来越多的关注和重视,我国电动汽车的研究现状和发展趋势备受关注。

本文将从我国电动汽车的研究现状、发展趋势以及面临的挑战等方面进行探讨。

一、研究现状1. 技术水平逐步提升随着电动汽车技术的不断发展,我国的电动汽车技术水平也在不断提升。

目前,我国电动汽车的技术水平已经进入了一个相对成熟的阶段,电池技术、电机技术、充电技术等方面都有了长足的发展。

特别是在电池技术方面,我国成为了全球领先的电池生产国之一,拥有了先进的动力电池技术和制造能力。

2. 政策扶持力度加大为了推动电动汽车产业的发展,我国相关部门出台了一系列政策支持措施,包括购车补贴、充电设施建设补贴、税收优惠等方面的支持政策。

这些政策的出台为电动汽车产业的发展提供了强有力的支持,激发了广大消费者购买电动汽车的积极性,也为电动汽车产业的发展创造了良好的环境。

3. 产业链日趋完善我国的电动汽车产业链日趋完善,整个产业从上游的电池、电机、控制系统到下游的整车制造和销售都有了相对完善的规划和布局。

特别是在电池、电机等关键零部件的研发和生产方面,我国已经具备了相当强大的实力,乘用车和商用车的电动车辆在市场上也取得了一定的成绩。

二、发展趋势1. 技术创新驱动未来,技术创新将继续是我国电动汽车产业发展的主要驱动力。

在电池技术、电机技术、充电技术等方面,我国将继续加大研发力度,推动技术水平的不断提升。

特别是在新能源汽车关键零部件的研发和生产方面,我国将继续加大投入力度,提高自主创新能力。

2. 产品多样化未来,我国的电动汽车产品将会呈现出多样化的发展趋势。

不仅仅是传统的乘用车、商用车,还会涌现出更多种类的电动汽车产品,如纯电动客车、混合动力客车、电动物流车等。

这些新型电动汽车产品将进一步满足市场的多样化需求,推动电动汽车产业的发展。

3. 全产业链协同发展未来,整个电动汽车产业链将会实现更加紧密的协同发展。

2024年新能源汽车电机及控制器市场前景分析

2024年新能源汽车电机及控制器市场前景分析

新能源汽车电机及控制器市场前景分析概述新能源汽车的兴起以及对环境保护的需求推动了电动汽车市场的迅速发展。

作为电动汽车的核心部件,电机及控制器在新能源汽车市场中起着至关重要的作用。

本文将对新能源汽车电机及控制器市场前景进行分析。

电机市场前景分析市场规模随着新能源汽车市场的不断发展,电机市场也将迎来巨大的发展机遇。

根据市场研究机构的数据显示,2019年全球电机市场规模达到XX亿美元,预计到2025年将增长至XX亿美元。

技术创新电机技术的不断创新也推动了市场的发展。

随着永磁同步电机、感应电机和开关磁阻电机等新型电机技术的成熟,电机效率和功率密度得到了显著提升,满足了汽车制造商对高性能和高效能电机的需求。

政策支持各国政府对新能源汽车的政策支持也将促进电机市场的发展。

许多国家纷纷出台了购车补贴政策和减少尾气排放的要求,鼓励消费者购买电动汽车。

这些政策的推动将进一步推动电机市场的增长。

控制器市场前景分析市场需求电机控制器作为电机的核心组成部分,对于确保电机的正常运行和性能优化起着关键作用。

随着电动汽车市场的快速增长,对于高性能、高可靠性的电机控制器的需求也在不断增加。

技术发展电机控制器的技术发展也推动了市场的增长。

现代电机控制器采用了先进的数字信号处理技术和智能控制算法,能够更精确地控制电机的转速和扭矩输出,提高了电机的效率和响应速度。

制造商竞争电机控制器市场竞争激烈,来自全球的电机控制器制造商争相进入市场。

这些制造商通过不断创新和研发,提供更高质量和更可靠性的电机控制器产品,满足消费者对电动汽车性能的要求。

结论综上所述,新能源汽车电机及控制器市场前景非常广阔。

随着新能源汽车市场的增长和技术的不断创新,电机及控制器市场将迎来更大的发展机遇。

政策支持、技术进步和增加消费者需求将推动该市场的快速增长。

作为汽车制造业的核心领域之一,新能源汽车电机及控制器市场将继续吸引更多的投资和创新。

2024年新能源汽车电机控制器市场分析现状

2024年新能源汽车电机控制器市场分析现状

2024年新能源汽车电机控制器市场分析现状1. 引言新能源汽车的快速发展推动了电机控制器市场的不断壮大。

电机控制器是新能源汽车的核心组件之一,用于控制电动机的工作状态和性能。

本文将对新能源汽车电机控制器市场的现状进行分析,包括市场规模、市场竞争格局和市场发展趋势等方面。

2. 市场规模新能源汽车电机控制器市场规模在近几年持续增长。

随着新能源汽车销量的大幅增加,电机控制器的需求也逐渐增加。

据市场研究机构的数据显示,2019年新能源汽车电机控制器市场规模达到XX亿元,预计到2025年将达到XX亿元。

3. 市场竞争格局目前,新能源汽车电机控制器市场竞争激烈,主要厂商包括国内外知名汽车制造商和电机控制器专业厂商。

其中,国内汽车制造商在市场份额上占据较大比例,但随着国内电机控制器技术的不断提升和专业厂商的崛起,市场竞争格局正在逐渐发生变化。

4. 市场发展趋势4.1 技术创新随着电动汽车技术的不断发展,电机控制器的技术也在不断创新。

新一代电机控制器采用更高效的功率电子器件,具有更低的功耗和更高的工作效率。

同时,采用先进的控制算法和智能化的系统,进一步提升了电机控制器的性能和稳定性。

4.2 市场占有率变化随着电机控制器技术的进步,市场占有率正在发生变化。

一些新兴的电机控制器制造商凭借创新的技术和产品性能,逐渐在市场上崭露头角。

同时,传统汽车制造商也不断加大研发投入,以提高自身在新能源汽车电机控制器市场的竞争力。

4.3 政策支持政府对新能源汽车产业的支持力度不断加大,这也为电机控制器市场的发展提供了良好的政策环境。

一些地区出台了一系列的补贴政策,鼓励企业研发和生产电机控制器,推动市场规模的不断扩大。

5. 结论新能源汽车电机控制器市场作为新能源汽车产业链的重要组成部分,市场规模不断增加,市场竞争也日益激烈。

随着技术的进步和政策的支持,电机控制器的市场前景十分广阔。

企业应积极创新、提高产品性能,以迎接市场的挑战和机遇。

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势来源:互联网更新时间:2012-03-09 11:23:05 [我要投稿]1 引言我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。

随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。

在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。

经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。

在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。

2 电动汽车用驱动电机系统的特点及分类电动汽车对驱动电机系统的要求至少包括:(1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况;(2)基速以上为恒功率运行,以适应最高车速、超车等要求;(3)全转速运行范围内的效率最优化,以提高车辆的续驶里程;(4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性;(5)低成本及大批量生产能力。

电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。

随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。

特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。

电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

其中,异步电机主要应用在纯电动汽车(包括轿车及客车),永磁同步电机主要应用在混合动力汽车(包括轿车及客车)中,开关磁阻电机目前主要应用在客车中。

新能源汽车电机驱动控制技术的前沿发展趋势

新能源汽车电机驱动控制技术的前沿发展趋势

新能源汽车电机驱动控制技术的前沿发展趋势新能源汽车电机驱动控制技术的前沿发展趋势随着环境保护意识的增长和对传统燃油汽车的限制加强,新能源汽车逐渐成为人们关注的焦点。

其中,电机驱动控制技术对新能源汽车的性能和效能起着至关重要的作用。

本文将从前沿发展趋势的角度探讨新能源汽车电机驱动控制技术的未来。

首先,随着电动机技术的不断创新和进步,新能源汽车电机的功率密度将会不断提高。

通过采用先进的磁性材料和电机设计技术,电机的体积和重量可以被大幅减小,从而提高整车的能源利用效率和行驶里程。

此外,电机的高功率密度还将带来更加强劲的动力输出,提升新能源汽车的加速性能和行驶稳定性。

其次,电机驱动控制技术将更加智能化和自适应。

智能控制算法和传感器技术的发展使得电机驱动系统具备了更强的自主学习和适应能力。

通过对驱动过程的实时监测和分析,电机控制系统可以根据不同的驾驶环境和需求,实现智能控制策略的自动调整。

这不仅可以提高车辆的驾驶品质和安全性,还可以进一步优化能源利用效率,延长电池寿命。

第三,新能源汽车电机驱动控制技术将更加注重系统的整合和协同。

随着新能源汽车的普及,电动机、电池、电控系统等各个组成部分之间的协同作用变得尤为重要。

未来的电机驱动控制技术将更加注重整车系统级的优化设计,以实现最佳的能源利用和整车性能。

此外,新能源汽车电机驱动控制技术还将与智能网联技术相结合,实现车联网的功能,提供更加智能、便捷的驾驶体验。

最后,新能源汽车电机驱动控制技术的发展还将更加注重可持续性。

随着可再生能源的不断发展和普及,新能源汽车电机的供能方式将越来越多地依赖于可再生能源。

同时,电机的制造和回收过程也将更加环保和节能。

未来,新能源汽车电机驱动控制技术将更加注重减少对环境的影响,实现可持续发展的目标。

综上所述,新能源汽车电机驱动控制技术的未来发展趋势包括提高功率密度、智能化和自适应、系统整合和协同以及可持续发展。

这些发展趋势将不断推动新能源汽车的性能和效能提升,进一步推动新能源汽车的普及和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:35《电动汽车》课程论文电动车电机驱动控制技术的研究现状及其发展趋势Study Status and DeveIopment Trend ofEIectric VehicIeControI TechnoIogy of Motor Driving班级:车辆1103姓名(及手机):李朗学号:1101504321任课教师:郑建祥2013年5月14号电动车电机驱动控制技术的研究现状及其发展趋势摘要:当今世界上节能和环保日益受到重视,因此电动车技术的发展步伐正在加快。

本文综合评述了电动车的关键技术—电机驱动技术,并对未来的发展趋势作了展望。

关键词:电动汽车;电机;驱动系统Study Status and DeveIopment Trend ofEIectric VehicIeControI TechnoIogy of Motor Driving Abstract:The development of the technology for electric vehicle is speeding up,as more attentions have been paid to the world energy saving and environment protection.This article described the key technology to electric vehicle———the motor driving control system,and made a prospect for the future technology.Key words:electric vehicle;motor;driving1.课题背景及选题意义由于能源和环境的压力,节能减排、以减少二氧化碳为目标的“低碳”经济的概念越来越得到全社会的认可。

与内燃机汽车相比,电动汽车具有无污染、低噪声、高效率、结构简单、维修方便等优点,以其为代表的新能源汽车受到国内外的极大关注。

根据 TRU Group 的预测,2015、2019 年全球电动汽车产量约为 200 万辆、425 万辆。

而根据美国阿贡实验室的评估报告,电动汽车控制器约占整车生产成本的 9.5%结合以上数据分析,2015 年后全球电动汽车驱动电动机控制器所占市场份额大约为210亿元。

目前,国外大部分汽车企业在电动汽车领域有充足的积累,控制策略成熟度高,整车节能效果良好,控制器产品通过市场检验证实了其可靠性,尤其美国、日本及欧洲国家所拥有的电动汽车研发技术处于世界领先水平。

目前国内的车用驱动电机系统已达到了小批量生产的水平,包括上述的各种类型电机以及风冷、水冷等冷却形式,涵盖5kw~180kw功率范围。

部分系统指标(如比功率和系统效率)达到了国际先进水平。

系统中应用了矢量控制、直接转矩控制等控制方法,采用了Igbo等全控型电力电子器件,dsp等先进的数字处理器,can总线通讯模式等控制技术,对参数辨识,效率优化,死区补偿等专门的问题开展了有针对性的研究,取得了卓有成效的成果,有一大批车辆已在城市道路上进行示范运行。

目前车用驱动电机系统尚需提高的地方:①全运行范围内的转矩、转速控制精度,效率最优化;②系统可靠性及耐久性尚未得到充分验证,和汽车行业的严格要求还有一定差距;③动力总成装置的集成度不高,机电一体化不够;④关键材料(如高性能硅钢片,绝缘材料)和关键元器件(如Igbo模块,cpu 芯片)仍依靠进口,限制了选择余地和成本降低;⑤尚未形成完整的、满足汽车工业标准的供应商体系。

虽然具备了小批量供货的能力,但产品尚未通过ts16949质量体系标准认证。

今后仍需要重点研究的内容:①系统的集成化;②高性能电机控制策略,电机效率优化;③系统热管理;④系统失效模式分析,系统可靠性、耐久性预测与快速评估方法;⑤系统电磁兼容,环境适应性研究及试验验证,电机系统成本控制等鉴于此,国家在《电动汽车科技发展“十二五”专项规划》中明确指出开发系列纯电驱动汽车及其能源供给系统。

电动机驱动控制器作为电动汽车的关键部件,其性能优劣直接影响整车的动力性与经济性。

电动汽车电驱动系统应具有尽可能高的转矩密度、良好的转矩控制能力、高可靠性及在宽车速范围内的高效率。

电动汽车电驱动功能的实现涉及电机、电力电子、微处理器、蓄电池、控制理论等多学科技术领域,是赶超世界汽车先进水平的核心技术。

因此,对电动汽车电驱动系统的研究开发具有重要的社会意义和工程实际意义。

2.电动汽车用电机概述相比传统汽车,电动汽车的动力通过柔性的电缆传输且驱动电机和变速器的布置多种多样,省去了联轴器和传动轴等装置因此结构较为简单。

在结构上,电动汽车可分为动力能源系统、电机驱动系统和辅助控制系统,结构如图1.1所示。

电机驱动系统一般由驱动电机、控制系统(包括控制器和传感器)、减速及传动装置、车轮等组成,它是电动汽车关键部分之一。

电机驱动系统通过接收控制系统发来的命令,把动力电池的能量转变为电机的机械能,经由传动系统将动力传递到车轮上,保证车辆正常行驶。

电动汽车研究的最终目的以为了替代当前的燃油车,在性能上要保证车辆能够频繁的起停、加减速、乘坐的舒适性和恶劣环境的通过性等,因此对于电动汽车的驱动系统要有较高的要求:①电动汽车用电动机应具有简单耐用、过载能力强、加速性好、转矩的动态响应快的特点。

②电动机要能实现对转矩和功率的快速平滑的响应且能满足恒转矩区和恒功率区的调速。

能在起步、爬坡等低速范围运行时输出较大的恒定转矩;在额定转速以上运行时,恒功率输出,以满足超车加速等高速行驶要求,提高了调速范围。

其良好的自动调速功能减轻了司机的操纵强度,达到了与内燃机车相同的加速踏板响应效果。

③电动汽车用电动机应具有再生制动功能。

可以在汽车减速或下坡时,回收制动能量储存在动力电池中,提高了整车的能量利用率,也增加了车辆的续驶里程。

④为满足减少系统损耗和延长续驶里程的要求,电动汽车用电动机驱动系统效率尽量达到最优。

而且电机应有较高的瞬时功率和功率密度,以满足高速行驶的需要。

⑤要求车用电机可靠性好,以适应在恶劣环境下的长期工作;便于使用与维修;尺寸和重量小,便于整车布置;价格便宜,利于批量应用。

图 1.1 电动汽车系统简图Fig1.1 Diagram of electric vehicle system目前,根据电动车辆所装备的电机类型,驱动系统一般可分为直流电机驱动系统和交流电机驱动系统。

表 1.1 为相应的电动汽车用电机的性能比较。

直流电动机的低速恒转矩和高速恒功率的特性非常适合汽车对转矩的要求并且结构简单,控制技术成熟,它是最早用于电动车的,像日本东京大学研制的 UOT 电动汽车就采用了直流串励电动机。

但由于效率低下、体积和质量较大、可靠性较差、其电刷和换向器要经常维护,不适用高速运转且换向装置工作时易产生火花而对其他电子器件造成影响等缺点,基本上已被永磁同步、无刷直流和感应电机等交流电机等取代。

表 1.1 各种电动车用电机的性能相比来说,交流感应电机(也称交流异步电机) 效率高、调速范围宽、可靠性好、便于维护、体积和质量小、价格便宜,是目前在电动汽车上得到广泛应用的电机。

美国的电动汽车普遍采用感应电动机驱动,如 Chrysler 公司生产的 EpicVan,Ford 公司生产的 Ranger EV,通用汽车公司生产的 IMPACT 和 EV1 电动汽车。

还有德国大众的 Golf IV 电动汽车等。

我国的胜利 SL6700DD 电动客车,郑州华联ZK6820HG 电动轻型客车等也采用感应电动机。

永磁交流电机亦称永磁无刷电机(PMBLM),它包括永磁同步电机(PMSM)和无刷直流电机(BLDCM)。

前者凭借功率密度大、效率高、体积小、调速范围宽等优点,在电机驱动系统中的发展前景最为广阔,现已应用在多种电动汽车上。

而后者虽具有相同的优点,但是转矩脉动大,控制较前者复杂。

日本尼桑公司的ALTRA6,丰田公司的 RAV4 和 PRIUS 采用永磁同步电机驱动。

英国、法国的电动汽车则主要采用永磁无刷直流电机。

交流永磁电机采用永磁体励磁,具有效率高,功率密度大等优点,但是高温工作时存在退磁现象会降低其性能,而且与感应电机相比成本较高,可靠性和使用寿命差。

开关磁阻电机虽然结构简单可靠、运行效率高、成本低、易于控制;但工作噪声大、转矩脉动严重,在电动汽车的驱动系统中应用较少,如国内东风汽车开发的EQ6110HEV。

3.电机驱动系统的关键技术3.1 电机控制技术的发展本论文针对现在应用较多的感应电机进行研究。

早期的控制方法有 V/F 和转差率调速法,但是其调速范围小,转矩特性不好,不适合电动汽车的频繁起停和加减速的要求。

通过分析交流感应电机的模型可知它是一个高阶多变量、强耦合的非线性系统,而早期的控制算法根据电机的稳态等效电路和计算公式实现其控制,系统的动态控制效果不理想。

现在对交流感应电机各种控制方法的研究主要集中在基于磁场定向的矢量控制、直接转矩控制等,其相同之处在于实现对控制量的解耦,以确保交流电机的控制性能接近或达到直流电机的控制效果。

20 世纪 80 年代中期,德国的 M.Depenbrock 教授和日本的 I.Takahashi 教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。

其后,该理论又被应用到弱磁调速范围。

直接转矩控制(Direct Torque Control,DTC)方法是用空间矢量的分析方法分析电动机的数学模型,采用定子磁场定向,电流不需解耦,对定子磁链和电磁转矩进行直接控制,转矩的响应快速。

这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现 PWM 脉宽调制和系统的高动态性能。

它直接抓住电机输出特性,省去了复杂的矢量变换并对电动机的模型进行简化。

其结构简单,控制思路新颖、简洁明了,克服了矢量控制运算复杂的缺点,转矩响应迅速,动静态特性优良,但是缺点也十分明显:电压、电流波形畸变比较严重,转矩脉动较大。

1971 年德国 F.Blaschke 提出了磁场定向的矢量控制(field-oriented vectorcontrol,FOC)矢量控制的主要原理是模拟直流电机的控制,基于磁场定向原理,通过解耦分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制目的,其控制精度高、动态响应快。

现在矢量控制的发展已比较成熟,交流驱动驱动系统大都采用此技术。

然而,实际运用中转子磁链观测的准确性及控制的复杂性问题使得实际的控制效果不如理论分析的好。

这是矢量控制技术在实践上的不足之处,但是随着各种高性能芯片成本的降低,矢量控制的应用也将越来越广泛。

相关文档
最新文档