超临界流体技术原理及应用

合集下载

超临界流体技术原理

超临界流体技术原理

超临界流体技术原理超临界流体技术是一种在高压和高温条件下利用流体的性质进行实验和应用的技术方法。

超临界流体是指在临界点以上的温度和压力条件下存在的物质状态,具有介于气体和液体之间的性质。

超临界流体技术在化学工业、材料科学、能源领域等各个领域都具有广泛的应用前景。

本文将介绍超临界流体技术的原理及其在不同领域中的应用。

一、超临界流体的原理超临界流体是指在临界点以上的温度和压力条件下,物质处于气液临界态,具有与常规流体截然不同的性质。

超临界流体的原理基于以下几个重要特性:1. 高溶解性:超临界流体具有极高的溶解性能,可溶解多种有机物质,包括一些传统溶剂无法溶解的物质。

这归因于超临界流体的密度和黏度变化幅度大,而且与其它流体性质相比,超临界流体的介质分子间作用力较小。

2. 可逆性:超临界流体的性质具有可逆性,即在改变温度和压力的条件下,可以实现物质的溶解和分离。

这一特性使得超临界流体技术在催化剂的制备、化合物的提取和纯化等领域有着独特的优势。

3. 调控性:超临界流体的性质可以通过调控温度和压力来改变。

通过调节温度和压力的变化,可以实现对超临界流体的物理和化学性质的精确控制,从而实现对物质的选择性提取和分离。

二、超临界流体技术在化学工业中的应用1. 超临界流体萃取技术:超临界流体萃取技术是指利用超临界流体的溶解性和可逆性进行物质的提取和分离。

常用的超临界流体包括二氧化碳、甲烷等。

超临界流体萃取技术在化学工业中广泛应用于天然产物提取、催化剂制备等领域,具有高效、环保的特点。

2. 超临界干燥技术:超临界干燥技术是利用超临界流体的溶解性进行湿物质的干燥。

相比传统的热空气干燥方法,超临界干燥技术具有高效、快速、无残留溶剂等优势,被广泛应用于食品工业、制药工业等领域。

三、超临界流体技术在材料科学中的应用1. 超临界流体沉积:超临界流体沉积是利用超临界流体的高溶解性和低黏度特性进行材料的制备。

通过控制温度和压力等条件,可以实现对沉积速率、晶体结构等参数的精确控制,从而制备出各种功能材料。

超临界流体技术在制药领域的应用研究

超临界流体技术在制药领域的应用研究

超临界流体技术在制药领域的应用研究在当今世界发展的迅速和快节奏的社会中,制药行业也随着时代进步得到了飞速的发展,许多新的制药技术被不断研究和开发。

其中,超临界流体技术作为一种新型的制药工艺技术,在制药领域得到了越来越广泛的应用和重视。

超临界流体技术(SFE)是指在临界点以上使流体处于液态和气态双相状态下的技术。

随着SFE的应用研究的深入,人们发现,该技术有助于提高药物的生物利用度、改善药物的物理和化学性质,同时还能消除残留有毒物质等优点,因而在制药领域得到了大力推广。

一、 SFE技术在制药领域的基本原理1. 超临界流体的特征超临界流体有许多独特的特性,如密度很大,比表面积小,渗透性大等。

此外,它还有一些比较重要的性质,如扩散系数大、粘度低、表面张力小和溶解能力强等,这些特性使超临界流体成为一种理想的药物分离和提纯的介质。

2. 超临界流体技术的机制超临界流体技术是利用了药物和超临界流体之间的相互作用来进行提取和分离的。

在超临界流体提取过程中,药物首先被溶解在超临界流体中,接着通过超临界流体的扩散和极化作用迅速进入药物的深层。

当药物的浓度达到一定程度后,超临界流体中的药物开始与晶体相分离,从而达到药物的提取和分离。

3. 超临界流体提取和分离的优点超临界流体技术有以下优势:a. 提取效率高与传统的提取技术相比,超临界流体技术具有快速提取效率的优势,其中目前研究的最具代表性的是胡椒碱、氨基酸和黄酮类化合物等。

b. 商品相对纯度高使用超临界流体技术进行提取和分离可以得到商品相对纯度很高的产物,这是由于超临界流体可以很好地对比重相似的产物进行分离。

c. 反应过程绿色环保使用超临界流体进行制药反应,也可以免除有机溶剂的使用,环保性很高,大幅减少治理药物残留对环境的影响。

d. 对于热敏性质药物的提取反应由于超临界流体具有较高的扩散系数和较低的表面张力,所以可以对热敏性质药物进行提取和分离的高效反应,具有完美的使用效果。

超临界流体萃取的工作原理及应用

超临界流体萃取的工作原理及应用

超临界流体萃取的工作原理及应用高等生化分离技术112300003 林兵一、超临界流体萃取的概念超临界流体(SCF)是指状态超过气液共存时的最高压力和最高温度下物质特有的点—临界点后的流体。

超临界流体是一种介于气体和液体之间的流体,无相之境。

超临界流体萃取(SFE)是将超临界流体作为萃取溶剂的一种萃取技术,兼有蒸馏和液液萃取的特征。

二、超临界流体萃取的理论原理1.任何一种物质都存在三种相态:气相、液相、固相。

2.液、气两相成平衡状态的点叫临界点。

在临界点时的温度和压力分别称为临界温度Tc和临界压力Pc。

不同的物质其临界点所要求的压力和温度各不相同。

3.物质的临界状态是指其气态与液态共存的一种边缘状态。

在此状态中,液体的密度与其饱和蒸汽的密度相同,因此界面消失。

利用此原理诞生了超临界流体萃取技术。

三、超临界流体萃取的技术原理(CO2为例)利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。

超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可以大幅度节能。

超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。

超临界流体萃取技术及其在食品工业中的应用

超临界流体萃取技术及其在食品工业中的应用

超临界流体萃取技术及其在食品工业中的应用一、本文概述《超临界流体萃取技术及其在食品工业中的应用》这篇文章旨在深入探讨超临界流体萃取(SFE)技术的原理、特点及其在食品工业中的广泛应用。

超临界流体萃取作为一种新兴的分离技术,其独特的萃取效率和环保特性使其在食品加工、提取和纯化等领域具有广阔的应用前景。

本文将首先概述超临界流体萃取技术的基本原理和优势,然后详细介绍其在食品工业中的具体应用案例,包括天然产物的提取、油脂的精炼、食品中农药残留的去除等。

通过本文的阐述,旨在为读者提供一个全面、深入的了解超临界流体萃取技术的平台,并为其在食品工业中的进一步应用提供参考和指导。

二、超临界流体萃取技术原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种基于物质在超临界状态下具有特殊溶解能力的分离技术。

其技术原理主要是利用超临界流体(如二氧化碳、乙醇等)的物理化学性质,在特定的温度和压力下,使流体兼具气体和液体的双重特性,从而实现对目标物质的高效、选择性萃取。

在超临界状态下,流体的密度、扩散系数和溶解度等参数均会发生显著变化,这些变化使得超临界流体具有优异的渗透能力和溶解能力。

通过调整温度和压力,可以控制超临界流体的溶解度和选择性,从而实现对目标物质的高效萃取。

在食品工业中,超临界流体萃取技术主要用于提取食品中的天然成分,如色素、香气成分、油脂等。

与传统的提取方法相比,超临界流体萃取具有操作温度低、提取时间短、提取效率高、溶剂用量少、提取物纯度高等优点。

由于超临界流体萃取过程中无需使用有机溶剂,因此可以避免溶剂残留对食品质量和安全性的影响。

超临界流体萃取技术的核心设备是超临界萃取装置,其主要包括高压釜、压缩机、分离器、热交换器等部分。

在萃取过程中,首先将超临界流体通过压缩机增压至所需压力,然后通过热交换器加热至所需温度,形成超临界流体。

接着,将超临界流体与待提取的物料接触,利用超临界流体的溶解能力将目标物质萃取出来。

超临界流体技术在化学制造中的应用

超临界流体技术在化学制造中的应用

超临界流体技术在化学制造中的应用随着化学制造的发展,人们对于绿色环保和节能降耗的要求逐渐增加。

超临界流体技术作为一种新型的制造技术,由于其独特的特性和优势,逐渐得到了广泛的应用和重视。

本文将探讨超临界流体技术在化学制造中的应用,包括其原理、优点和应用领域等方面。

一、超临界流体技术的原理超临界流体是一种介于气态和液态之间的物质状态。

当其温度和压力超过临界点时,物质的密度和黏度急剧减小,分子间力变得很小,使得其具有很高的溶解度、扩散和反应性能。

超临界流体技术就是利用超临界流体的特性,在高温高压条件下,将物质溶解或反应,从而达到制造化学品的目的。

二、超临界流体技术的优点1.高效节能:超临界流体技术利用高温高压条件,可以减少反应时间和降低反应温度,从而提高产率和降低制造成本。

此外,由于超临界流体的物理特性改变,使其在反应中不需要大量的溶剂,减少了能源和溶剂的消耗。

2.环保无害:传统化学制造过程中,往往需要大量的有机溶剂和催化剂,这些化学品对环境和人体健康有着严重的影响。

超临界流体技术不需要使用大量的溶剂和催化剂,从根本上解决了有机溶剂的挥发和有毒废物的排放等环境问题。

3.可控性强:由于超临界流体的物理和化学性质发生了变化,使得其在反应中的传质速度、反应速率和晶化等过程都发生了明显的变化。

这种变化可以让反应的可控性更加强,避免一些不必要的变异和异常反应发生。

三、超临界流体技术的应用领域1.精细化学品制造方面:超临界流体技术在精细化学品制造方面有广泛的应用,如橡胶、塑料、化妆品、食品、药品等领域。

2.催化剂制造方面:超临界流体技术可以制备各种金属、非金属、无机和有机催化剂。

其制造过程环保无害,且通过调控相对介质的性质,可以得到不同形式和结构的催化剂。

3.纳米材料制备方面:超临界流体技术还可以制备纳米材料,如金属、半导体、磁性、光学、催化等纳米粒子材料。

四、超临界流体技术的挑战和前景虽然超临界流体技术有着广泛的应用前景,但其在实际应用中仍然存在一些挑战。

超临界流体技术的原理和应用

超临界流体技术的原理和应用

超临界流体技术的原理和应用随着现代科学和技术的不断发展,超临界流体技术成为了当今世界上备受关注的研究热点。

超临界流体技术的应用领域非常广泛,包括石油化工、制药、食品加工、环境保护、材料学等多个领域。

本文将阐述超临界流体技术的原理和应用。

一、超临界流体技术的原理1. 超临界介质的定义超临界介质是指温度和压力都高于其临界点的物质状态。

在这个状态下,介质的性质和传统气态和液态介质大大不同。

2. 超临界流体的特点超临界流体具有许多独特的物理化学特性,如超高的物理性能,高扩散性,高溶解力、密度可调性、温和的反应条件、不用溶剂或少量溶剂等。

3. 超临界流体技术的原理超临界流体技术是将物质升至超临界状态后,在适当的条件下使它与其他物质接触,从而利用其特殊的溶解性、传质性、反应性等特性,实现物质的分离和纯化、催化反应、合成新材料、制备微粒等现象。

二、超临界流体技术的应用1. 石油化工在石油化工领域,超临界流体技术被广泛应用于油藏开发、原油加工和废水处理等方面。

在油藏开发和原油加工中,超临界流体技术可以使油藏内残留油被有效开采和回收,从而达到更高的产量。

在废水处理方面,超临界流体技术可以大幅度降低废水中的污染物,使废水安全排放。

2. 制药在制药领域,超临界流体技术的应用主要体现在药物精制和制剂加工方面。

超临界流体可用于精制药物,并用于直接制备固体药物和微粒制剂,从而可以改进药物的生物利用度和控释性。

3. 食品加工在食品加工领域,超临界流体技术可以保持食品中的活性成分,同时去除杂质和微生物。

此外,超临界流体技术还可用于其它生物活性物质的提取和纯化。

例如,绿茶提取物的制备,以及咖啡因和咖啡酸的提取和精制等。

4. 环境保护超临界流体技术可以用于环保领域,例如用于处理含有大量有机物和重金属的污染物。

此外,超临界流体还可用于除臭、氧化微污染物和催化反应等方面。

5. 材料学在材料学领域,超临界流体技术可用于磷化和氮化半导体材料、金属氧化物、无机纳米粒子和有机/无机杂化材料等制备过程中,其中最显著的可能是石墨烯的合成和表征。

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用一、超临界流体萃取的原理超临界流体萃取是一种利用超临界流体对物质进行分离和提取的技术。

所谓超临界流体,是指在高于其临界温度和临界压力条件下的流体状态。

在这种状态下,超临界流体既具有气体的低粘度和高扩散性,又具有液体的高溶解力和可控性。

超临界流体萃取的基本原理是通过调节温度和压力,使超临界流体的密度和溶解力发生变化,从而实现对目标物质的选择性提取。

超临界流体萃取的主要原理包括溶解度变化原理、扩散速率变化原理和传质机理变化原理。

1. 溶解度变化原理超临界流体的溶解力随温度和压力的变化而变化。

通过调节温度和压力,可以使溶解度增大或减小,从而实现对目标物质的选择性提取。

当温度和压力适当增大时,超临界流体的溶解力会增大,有助于提高目标物质的萃取效率。

2. 扩散速率变化原理超临界流体的扩散速率比常规溶剂要快得多。

基于扩散速率变化原理,超临界流体可以更快地进入被提取物质的内部,提高物质的提取速率。

此外,超临界流体的扩散速率还受到温度和压力的影响,可以通过调节参数来控制提取速率。

3. 传质机理变化原理超临界流体的传质机理与常规溶剂有所不同。

超临界流体通过质量传递和热传递来实现物质的提取和分离。

传质机理的变化使得超临界流体的提取效率更高,同时还可以减少对环境的影响。

二、超临界流体萃取的应用超临界流体萃取技术在许多领域都有广泛的应用,主要包括化学、食品、药物和环境等。

1. 化学领域超临界流体萃取技术在化学合成、催化反应、分析测试等方面有着重要的应用。

超临界流体可以作为溶剂或反应介质,用于提取和分离化学物质,提高反应速率和选择性,减少催化剂的使用量。

2. 食品领域超临界流体萃取技术可以用于提取天然食品成分,如咖啡因、花青素、香料等。

相比传统的有机溶剂提取方法,超临界流体萃取技术具有高效、环保、无残留等优点,被广泛应用于食品加工和营养保健等领域。

3. 药物领域超临界流体萃取技术在药物研发、制备和分析中有着重要的应用。

超临界流体的应用及其原理

超临界流体的应用及其原理

超临界流体的应用及其原理1. 超临界流体的概述超临界流体是指在临界温度和临界压力之上的流体状态。

在这种状态下,物质的性质会发生显著的改变,表现出类似气体和液体的特性。

超临界流体具有较高的扩散性、低的粘度和高的溶解能力,使其在很多领域得到广泛的应用。

2. 超临界流体的应用领域2.1 超临界流体的溶剂应用•超临界流体在化学领域中被广泛应用于溶剂中,用于提取天然产品、合成新材料等。

包括药物、天然色素、化妆品等领域。

2.2 超临界流体的催化应用•通过调节超临界流体的条件,可以提高催化剂的反应活性和选择性,使催化反应变得更高效。

2.3 超临界流体的分离应用•超临界流体在分离技术中具有广泛的应用,尤其在石油、食品、制药等行业中。

例如,超临界流体萃取技术可以高效地分离混合物,提取纯净的目标物质。

2.4 超临界流体的材料加工应用•超临界流体可以用于材料表面的改性、纳米颗粒的制备等应用。

通过控制超临界流体的条件,可以获得具有特殊性能的材料。

3. 超临界流体的原理超临界流体的特性与常规的气体和液体有所不同,主要是由于超临界流体接近它们的临界点,其密度和介电常数等物理性质发生显著改变。

超临界流体的原理主要涉及以下方面:3.1 超临界流体的临界点•超临界流体的临界温度和临界压力是其特殊性质的基础。

在超临界流体的临界点附近,物质的性质会发生剧烈的变化。

3.2 超临界流体的介电常数•超临界流体的介电常数通常比气体和液体大,这使得它具有更好的溶解能力,并且可以更好地传递电荷和热量。

3.3 超临界流体的密度•超临界流体的密度是根据物质的温度和压力来决定的。

在超临界状态下,物质的密度会随着温度和压力的变化而变化。

3.4 超临界流体的扩散性•超临界流体的扩散性好,能够渗透到物质的内部,使得物质之间的反应发生。

4. 超临界流体的借助技术超临界流体在应用中借助一些关键技术来实现其目的。

4.1 压力调节技术•通过调节超临界流体的压力,可以控制流体的密度和物性,从而实现不同的应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扩散系数介于气体和液体之间(大约是气 体的1/100,比液体要大数百倍).因而超临界
流体既具有液体对溶质有比较大的溶解度 的特点,又具有气体易于扩散和运动的特 性,传质速率大大高于液相过程。也就是 说超临界流体兼具气体和液体的性质。
可编辑ppt
4
是一种气、液不分的状态,没有相界面,
也就没有相际效应,有助于提高萃取效率, 可用于超临界流体干燥。
可编辑ppt
17
1.3.2改进的工艺流程
可编辑ppt
18
可编辑ppt
19
可编辑ppt
20
1.3.3几种产品SC—CO2萃取工艺流 程的介绍
可编辑ppt
21
可编辑ppt
22
可编辑ppt
23
可编辑ppt
24
可编辑ppt
25
可编辑ppt
26
可编辑ppt
27
超临界流体苹取技术的工业应用
⑥在物理化学性质的研究方面,除了对表 面张力、粘度、传热和传递特性进行了大 量的研究外,还对超临界流体的渗透及其 在聚合物中的吸附等进行了探索。
可编辑ppt
30
⑦超临界流体技术已应用到了化学反应和超 临界流体色谱,这极大地促进了超临界流 体技术的发展,并促使人们对超临界流体 技术中的基础理论问题进行更为深入地研 究。
超临界流体技术 原t
1
1.1 超临界流体 基本特征
当流体的温度和压力 处于它的临界温度和临 界压力以上时,称该流 体处于超临界状态。
可编辑ppt
2
气体、液体和超临界流体性质
可编辑ppt
3
从数据可知,超临界流体的密度比气体大 数百倍,具体数值与液体相当。其粘度仍 接近气体,但比起液体来,要小2个数量级。
可编辑ppt
16
能在接近常温下操作,对热敏性物质可适用;因粘 度小、扩散系数大,提取速度较快;溶质和溶剂 的分离彻底而且容易。从它的特性和完整性来看, 相当于一个新的单元操作,特别适合于热不稳定 性天然产物和生理活性物质的分离与精制。在发 达国家,超临界流体萃取技术发展很快,已普遍 用于医药、食品、香料、石油化工、环保等领域, 成为获得高质量产品的最有效方法之一。各国纷 纷推出各具特色的提取装置,已从实验室走向工 业化阶段。
*发展历史 *工业化进展
可编辑ppt
8
可编辑ppt
9
可编辑ppt
10
1.3超临界CO2是常用的超临界流体
可编辑ppt
11
SC—CO2除了具有超临界流体上述性质外, 且SC—CO2是非极性流体,加之CO2无毒、 惰性、无残留等一系列优点,一使之成为 最常用的超临界流体。
可编辑ppt
12
CO2相图
目前有关超临界流体萃取的物性数据仍然很
少,同时也缺乏能正确推算超临界流体萃取过 程的基本热力学模型。由于人们对近临界点的 压缩流体的行为不甚了解,目前的一些推算多 为半定量性质,传递性质的研究则更少。没有 这些基本数据和理论,过程设计和经济概算就 十分困难,严重阻碍了超临界流体萃取过程的 开发。
可编辑ppt
33
(2)高压设备和泵
工业生产中,高压操作是不可避免的,如何
解决由于高压带来的一些不利因素,使得该
技术可以可靠、安全地生产是非常重要的。
超临界流体萃取需在相当高的压力下操作,
压缩设备的投资比较大,在高压下操作,还
会引起附加的费用。某些超临界流体萃取过
可编辑ppt
5
可编辑ppt
6
物质处于其临界温度(Tc)和临界压力 (Pc)以上状态时,向该状态气体加压,
气体不会液化,只是密度增大,处于均相 状态,具有类似液态性质,同时还保留气 体性能,这种状态的流体称为超临界流体 (Supercritical fluid,简称SCF)
可编辑ppt
7
1.2超临界流体技术的发展
可编辑ppt
31
1.3.5关于“超临界CO2流体萃取” 虽然采用超临界CO2流体萃取技术能有效地
将需要分离提取的组分从原料中分离出来,但
超临界CO2流体萃取技术也不是万能的,仍存 在需要解决的问题。CO2的分子结构决定了它 对一定的分离过程有很大的局限性:对于烃类
和弱极性的脂溶性物质的溶解能力较好,但对
15
在传统的分离方法中,溶剂萃取是利用 溶剂和各溶质间的亲和性(表现在溶解度)的
差异来实现分离的;蒸馏是利用溶液中各 组分的挥发度(蒸气压)的不同来实现分离的。
而超临界流体萃取则是通过调节体系的压 力和温度来控制溶解度和蒸气压这两个参 数进行分离的,故超临界流体萃取综合了 溶剂萃取和蒸馏的两种功能和特点,进而 决定了超临界流体萃取具有传统普通流体 萃取方法所不具有的优势:通过调节压力 和温度而方便地改变溶剂的性质,控制其 选择性;适当地选择提取条件和溶剂,
于强极性的有机化合物则需加大萃取压力或使
用夹带剂来实现分离。一般来说,超临界CO2 萃取压力比较高,对设备的要求高,提取能力
小而且能耗较大;因此如何采取外部措施对超
临界CO2萃取过程的选择溶解能力和提取速率
进行强化就成了当前研可编究辑ppt 的新动向。
32
1.4 超临界流体萃取技术的优点及存在问题 1.4.1超临界流体萃取技术的优点 1.4.2超临界流体萃取技术的存在问题 (1)相平衡及传递研究不充分
可编辑ppt
13
超临界CO2是常用的超临界流体
超临界点附近, CO2压力和温度的微小变 化都可以引起流体密度很大的变化,并相 对地表现为溶解度的变化。因此,人们可 以利用压力、温度的变化来实现萃取和分 离的过程。
可编辑ppt
14
1.3SC--CO2萃取技
术应用及研究进展
1.3.1基本流程
可编辑ppt
③状态方程的研究仍以立方型为主,对各 种状态方程在超临界区的适用性进行了比
可编辑ppt
29
较,并加以改进。
④在缔合理论、混合规则方面提出了一些 新的见解,并将统计力学的方法运用于热 力学研究中。
⑤模型化方面除了进行多组分混合物的模 拟外,还进行了多级分离过程的模拟,目 前模型化已开始迈向了实用化。
可编辑ppt
28
1.3.4超临界流体技术基础理论研究的主要发 展特点如下。
①多相平衡的研究已从二元体系跨入到三 元体系,超临界流体除了应用二氧化碳外, 已扩展到各种低碳原子的烃类及其衍生物, 如CHF3、CF3Br等。 ②研究对象中加强了对天然产物萃取的研 究,如对脂肪酸及脂肪酸酯、萜二烯类、 芳香油类等提取的理论研究。
相关文档
最新文档