超临界流体技术的应用与原理

合集下载

超临界流体技术原理

超临界流体技术原理

超临界流体技术原理超临界流体技术是一种在高压和高温条件下利用流体的性质进行实验和应用的技术方法。

超临界流体是指在临界点以上的温度和压力条件下存在的物质状态,具有介于气体和液体之间的性质。

超临界流体技术在化学工业、材料科学、能源领域等各个领域都具有广泛的应用前景。

本文将介绍超临界流体技术的原理及其在不同领域中的应用。

一、超临界流体的原理超临界流体是指在临界点以上的温度和压力条件下,物质处于气液临界态,具有与常规流体截然不同的性质。

超临界流体的原理基于以下几个重要特性:1. 高溶解性:超临界流体具有极高的溶解性能,可溶解多种有机物质,包括一些传统溶剂无法溶解的物质。

这归因于超临界流体的密度和黏度变化幅度大,而且与其它流体性质相比,超临界流体的介质分子间作用力较小。

2. 可逆性:超临界流体的性质具有可逆性,即在改变温度和压力的条件下,可以实现物质的溶解和分离。

这一特性使得超临界流体技术在催化剂的制备、化合物的提取和纯化等领域有着独特的优势。

3. 调控性:超临界流体的性质可以通过调控温度和压力来改变。

通过调节温度和压力的变化,可以实现对超临界流体的物理和化学性质的精确控制,从而实现对物质的选择性提取和分离。

二、超临界流体技术在化学工业中的应用1. 超临界流体萃取技术:超临界流体萃取技术是指利用超临界流体的溶解性和可逆性进行物质的提取和分离。

常用的超临界流体包括二氧化碳、甲烷等。

超临界流体萃取技术在化学工业中广泛应用于天然产物提取、催化剂制备等领域,具有高效、环保的特点。

2. 超临界干燥技术:超临界干燥技术是利用超临界流体的溶解性进行湿物质的干燥。

相比传统的热空气干燥方法,超临界干燥技术具有高效、快速、无残留溶剂等优势,被广泛应用于食品工业、制药工业等领域。

三、超临界流体技术在材料科学中的应用1. 超临界流体沉积:超临界流体沉积是利用超临界流体的高溶解性和低黏度特性进行材料的制备。

通过控制温度和压力等条件,可以实现对沉积速率、晶体结构等参数的精确控制,从而制备出各种功能材料。

超临界流体技术在化学制造中的应用

超临界流体技术在化学制造中的应用

超临界流体技术在化学制造中的应用随着化学制造的发展,人们对于绿色环保和节能降耗的要求逐渐增加。

超临界流体技术作为一种新型的制造技术,由于其独特的特性和优势,逐渐得到了广泛的应用和重视。

本文将探讨超临界流体技术在化学制造中的应用,包括其原理、优点和应用领域等方面。

一、超临界流体技术的原理超临界流体是一种介于气态和液态之间的物质状态。

当其温度和压力超过临界点时,物质的密度和黏度急剧减小,分子间力变得很小,使得其具有很高的溶解度、扩散和反应性能。

超临界流体技术就是利用超临界流体的特性,在高温高压条件下,将物质溶解或反应,从而达到制造化学品的目的。

二、超临界流体技术的优点1.高效节能:超临界流体技术利用高温高压条件,可以减少反应时间和降低反应温度,从而提高产率和降低制造成本。

此外,由于超临界流体的物理特性改变,使其在反应中不需要大量的溶剂,减少了能源和溶剂的消耗。

2.环保无害:传统化学制造过程中,往往需要大量的有机溶剂和催化剂,这些化学品对环境和人体健康有着严重的影响。

超临界流体技术不需要使用大量的溶剂和催化剂,从根本上解决了有机溶剂的挥发和有毒废物的排放等环境问题。

3.可控性强:由于超临界流体的物理和化学性质发生了变化,使得其在反应中的传质速度、反应速率和晶化等过程都发生了明显的变化。

这种变化可以让反应的可控性更加强,避免一些不必要的变异和异常反应发生。

三、超临界流体技术的应用领域1.精细化学品制造方面:超临界流体技术在精细化学品制造方面有广泛的应用,如橡胶、塑料、化妆品、食品、药品等领域。

2.催化剂制造方面:超临界流体技术可以制备各种金属、非金属、无机和有机催化剂。

其制造过程环保无害,且通过调控相对介质的性质,可以得到不同形式和结构的催化剂。

3.纳米材料制备方面:超临界流体技术还可以制备纳米材料,如金属、半导体、磁性、光学、催化等纳米粒子材料。

四、超临界流体技术的挑战和前景虽然超临界流体技术有着广泛的应用前景,但其在实际应用中仍然存在一些挑战。

超临界流体技术的原理和应用

超临界流体技术的原理和应用

超临界流体技术的原理和应用随着现代科学和技术的不断发展,超临界流体技术成为了当今世界上备受关注的研究热点。

超临界流体技术的应用领域非常广泛,包括石油化工、制药、食品加工、环境保护、材料学等多个领域。

本文将阐述超临界流体技术的原理和应用。

一、超临界流体技术的原理1. 超临界介质的定义超临界介质是指温度和压力都高于其临界点的物质状态。

在这个状态下,介质的性质和传统气态和液态介质大大不同。

2. 超临界流体的特点超临界流体具有许多独特的物理化学特性,如超高的物理性能,高扩散性,高溶解力、密度可调性、温和的反应条件、不用溶剂或少量溶剂等。

3. 超临界流体技术的原理超临界流体技术是将物质升至超临界状态后,在适当的条件下使它与其他物质接触,从而利用其特殊的溶解性、传质性、反应性等特性,实现物质的分离和纯化、催化反应、合成新材料、制备微粒等现象。

二、超临界流体技术的应用1. 石油化工在石油化工领域,超临界流体技术被广泛应用于油藏开发、原油加工和废水处理等方面。

在油藏开发和原油加工中,超临界流体技术可以使油藏内残留油被有效开采和回收,从而达到更高的产量。

在废水处理方面,超临界流体技术可以大幅度降低废水中的污染物,使废水安全排放。

2. 制药在制药领域,超临界流体技术的应用主要体现在药物精制和制剂加工方面。

超临界流体可用于精制药物,并用于直接制备固体药物和微粒制剂,从而可以改进药物的生物利用度和控释性。

3. 食品加工在食品加工领域,超临界流体技术可以保持食品中的活性成分,同时去除杂质和微生物。

此外,超临界流体技术还可用于其它生物活性物质的提取和纯化。

例如,绿茶提取物的制备,以及咖啡因和咖啡酸的提取和精制等。

4. 环境保护超临界流体技术可以用于环保领域,例如用于处理含有大量有机物和重金属的污染物。

此外,超临界流体还可用于除臭、氧化微污染物和催化反应等方面。

5. 材料学在材料学领域,超临界流体技术可用于磷化和氮化半导体材料、金属氧化物、无机纳米粒子和有机/无机杂化材料等制备过程中,其中最显著的可能是石墨烯的合成和表征。

超临界流体技术在化工生产中的应用

超临界流体技术在化工生产中的应用

超临界流体技术在化工生产中的应用超临界流体技术,是一种在高压、高温条件下,將气体和液体的特氏点融合成一体的新型物质态态方式。

在化工生产中,超临界流体技术已经得到了广泛的应用。

本文将探讨超临界流体技术在化工生产中的应用的优点和发展趋势。

一、超临界流体技术的优点1.1 高效能: 在超临界条件下,液体和气体的分子之间的距离被压缩到了很小的程度,甚至比常温下互相团结。

因此,基于超临界流体的化学反应往往比常规反应更快、更有效。

1.2 節能:與傳統操作相比,超临界流体技术处理方式所需的能源要少得多,这主要是因为这种技术不需要使用其他溶剂或有害物质来溶解原料,从而避免了能源浪费和污染环境的问题。

1.3 高选择性:超临界条件下反应仅在狭窄的高温高压范围内进行,这种情况下反应中可能出现的必须进行修补或再過程可以在其他条件下转化的副产品是大大减少的,从而提高了产品的品质和可控性。

二、超临界流体技术的应用2.1 化工催化剂:超临界流体技术可用作催化剂的载体,用于吸附、分离、转化和传递分子等多个方面。

后续根据反应的需要对载体和催化剂组合提供的底物种类将不同,因此其他方面的催化发生更加复杂多样。

2.2 精细化工品制造: 超临界流体技术被广泛用于制造精细化学品,如药品,食品等。

由于超临界流体在温度、压力和pH值方面全面适应,可以促进和控制化学反应,从而产生高纯度的产品。

2.3 流体萃取:超临界流体技术还可用于流体萃取,例如,在制备芳香化合物时可以使用超临界二氧化碳作为萃取剂,实现高效而准确的提取目标物质。

三、超临界流体技术发展趋势随着科技的不断发展,超临界流体技术也在不断完善和发展。

未来超临界流体技术方面的应用将主要集中在两个方面:3.1 应用特定场:超临界流体技术已广泛应用于常规常温常压的工艺中,新的应用需要针对特定领域和场合,依赖于新的催化剂、固体材料、液体和气体条件等特性。

3.2 与其他技术的结合:超临界流体技术将不断与其他化学过程和新技术进行配合,如纳米技术和生物技术等。

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用一、超临界流体萃取的原理超临界流体萃取是一种利用超临界流体对物质进行分离和提取的技术。

所谓超临界流体,是指在高于其临界温度和临界压力条件下的流体状态。

在这种状态下,超临界流体既具有气体的低粘度和高扩散性,又具有液体的高溶解力和可控性。

超临界流体萃取的基本原理是通过调节温度和压力,使超临界流体的密度和溶解力发生变化,从而实现对目标物质的选择性提取。

超临界流体萃取的主要原理包括溶解度变化原理、扩散速率变化原理和传质机理变化原理。

1. 溶解度变化原理超临界流体的溶解力随温度和压力的变化而变化。

通过调节温度和压力,可以使溶解度增大或减小,从而实现对目标物质的选择性提取。

当温度和压力适当增大时,超临界流体的溶解力会增大,有助于提高目标物质的萃取效率。

2. 扩散速率变化原理超临界流体的扩散速率比常规溶剂要快得多。

基于扩散速率变化原理,超临界流体可以更快地进入被提取物质的内部,提高物质的提取速率。

此外,超临界流体的扩散速率还受到温度和压力的影响,可以通过调节参数来控制提取速率。

3. 传质机理变化原理超临界流体的传质机理与常规溶剂有所不同。

超临界流体通过质量传递和热传递来实现物质的提取和分离。

传质机理的变化使得超临界流体的提取效率更高,同时还可以减少对环境的影响。

二、超临界流体萃取的应用超临界流体萃取技术在许多领域都有广泛的应用,主要包括化学、食品、药物和环境等。

1. 化学领域超临界流体萃取技术在化学合成、催化反应、分析测试等方面有着重要的应用。

超临界流体可以作为溶剂或反应介质,用于提取和分离化学物质,提高反应速率和选择性,减少催化剂的使用量。

2. 食品领域超临界流体萃取技术可以用于提取天然食品成分,如咖啡因、花青素、香料等。

相比传统的有机溶剂提取方法,超临界流体萃取技术具有高效、环保、无残留等优点,被广泛应用于食品加工和营养保健等领域。

3. 药物领域超临界流体萃取技术在药物研发、制备和分析中有着重要的应用。

超临界流体的应用及其原理

超临界流体的应用及其原理

超临界流体的应用及其原理1. 超临界流体的概述超临界流体是指在临界温度和临界压力之上的流体状态。

在这种状态下,物质的性质会发生显著的改变,表现出类似气体和液体的特性。

超临界流体具有较高的扩散性、低的粘度和高的溶解能力,使其在很多领域得到广泛的应用。

2. 超临界流体的应用领域2.1 超临界流体的溶剂应用•超临界流体在化学领域中被广泛应用于溶剂中,用于提取天然产品、合成新材料等。

包括药物、天然色素、化妆品等领域。

2.2 超临界流体的催化应用•通过调节超临界流体的条件,可以提高催化剂的反应活性和选择性,使催化反应变得更高效。

2.3 超临界流体的分离应用•超临界流体在分离技术中具有广泛的应用,尤其在石油、食品、制药等行业中。

例如,超临界流体萃取技术可以高效地分离混合物,提取纯净的目标物质。

2.4 超临界流体的材料加工应用•超临界流体可以用于材料表面的改性、纳米颗粒的制备等应用。

通过控制超临界流体的条件,可以获得具有特殊性能的材料。

3. 超临界流体的原理超临界流体的特性与常规的气体和液体有所不同,主要是由于超临界流体接近它们的临界点,其密度和介电常数等物理性质发生显著改变。

超临界流体的原理主要涉及以下方面:3.1 超临界流体的临界点•超临界流体的临界温度和临界压力是其特殊性质的基础。

在超临界流体的临界点附近,物质的性质会发生剧烈的变化。

3.2 超临界流体的介电常数•超临界流体的介电常数通常比气体和液体大,这使得它具有更好的溶解能力,并且可以更好地传递电荷和热量。

3.3 超临界流体的密度•超临界流体的密度是根据物质的温度和压力来决定的。

在超临界状态下,物质的密度会随着温度和压力的变化而变化。

3.4 超临界流体的扩散性•超临界流体的扩散性好,能够渗透到物质的内部,使得物质之间的反应发生。

4. 超临界流体的借助技术超临界流体在应用中借助一些关键技术来实现其目的。

4.1 压力调节技术•通过调节超临界流体的压力,可以控制流体的密度和物性,从而实现不同的应用需求。

超临界流体及应用

超临界流体及应用

超临界流体及应用
超临界流体是指在高于其临界温度和临界压力的条件下存在的流体状态。

在这种状态下,流体既具有气体的低粘度和高扩散性,又具有液体的高介电常数、高溶解度和高密度。

超临界流体的独特性质使其在许多领域具有广泛的应用。

以下是超临界流体的一些应用:
1. 超临界流体萃取:超临界流体可用于从植物、动物和微生物中提取活性成分,例如药物、香料和色素。

它具有高溶解度和高扩散性,同时可以通过调节温度和压力来控制溶解度和选择性,使其在提取过程中更有效。

2. 超临界流体喷雾干燥:超临界流体喷雾干燥是一种将溶解的物质通过喷雾干燥技术从溶液中快速转化为颗粒状态的方法。

超临界流体可提供高扩散性和低表面张力,使其在干燥过程中能够更好地保持产物的颗粒性质。

3. 超临界流体反应:超临界流体中的反应速率通常比常规液相反应快。

超临界流体中的反应可以控制温度、压力、物质质量传递和催化剂的活性,因此被广泛应用于有机合成、催化反应和材料合成等领域。

4. 超临界流体色谱:超临界流体色谱是一种使用超临界流体作为流动相的色谱技术。

与传统的液相色谱相比,超临界流体色谱具有更高的扩散系数和较低的粘度,从而提高了分离效果和分析速度。

5. 超临界CO2的应用:超临界CO2是最常见和广泛应用的超临界流体之一。

它被用于金属的清洗、涂层、材料的制备、催化剂的合成和液体废弃物的处理等多个领域。

超临界流体的独特性质使其在化工、生物工程、材料科学等领域具有广泛的应用潜力。

随着对超临界流体的研究和理解的深入,将有更多创新的应用出现。

超临界流体技术在制药行业的应用

超临界流体技术在制药行业的应用

超临界流体技术在制药行业的应用引言:超临界流体技术是一项新兴领域,在制药行业中的应用具有非常广阔的前景。

超临界流体技术具有很多优良特性,如高扩散系数、可调谐的极性、低表面张力等,这些特性不仅提高了药物的制备质量,还降低了生产成本。

1. 超临界流体技术简介超临界流体技术是将气体和液体压缩到临界点以上,在高压状态下加热,使其变成一个介于气态和液态之间的超临界流体的一种技术。

该技术在制药行业中广泛应用,可以用于制备、提纯、分离和精细加工等方面。

2. 超临界流体技术在制药品制备中的应用制药品的制备可以通过超临界流体技术进行,通过这种技术可以得到纯度高、质量优、溶解度高的药物。

通过超临界流体技术,可以得到包含非极性、半极性、极性物质的纯化产物,生产出的药物具备更好的溶解度,也方便了药物的输送。

3. 超临界流体技术在药物提纯中的应用超临界流体技术可以用于药物的提纯。

在提纯过程中,超临界流体具有非常高的溶解能力,可以溶解某些杂质物,从而使药物得到很好的分离和提纯。

通过超临界流体技术,可以制备出高纯度的药物,达到临床应用要求。

4. 超临界流体技术在药物分离中的应用超临界流体技术还可以用于药物分离,这是制药过程中的一个重要步骤。

超临界流体技术具有非常高的溶解度,对药物的溶解能力很强,可以将药物与类似物、杂质等分离。

通过超临界流体技术,可以提高待分离的药物的纯度,使药物得到更好的分离。

5. 超临界流体技术在药物精细加工中的应用超临界流体技术还可以用于药物的精细加工,通过这种技术可以制备出粒径小、粉末均匀、溶解度好的药物,为药物的进一步研究提供了可能。

超临界流体技术的加工精度可以达到纳米级别,使得药物的效果能够得到大幅度提升。

结论:超临界流体技术具有许多优异特性,成为了其中一种生产药品和精细加工药品的新方法。

超临界流体技术在制药行业中的应用有着良好的前景。

随着超临界流体技术的不断发展和完善,它在制药领域的应用也将会更加广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界流体分离技术的原理及应用
超临界流体(SCF)是指在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界点状态,称为超临界状态。

处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称为SCF。

超临界流体具有选择性溶解物质的能力,并随着临界条件(T,P)而变化。

超临界流体可从混合物中有选择地溶解其中的某些组分,然后通过减压,升温或吸附将其分离析出。

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

超临界分离技术的特点:(1)萃取速度高与液体萃取,特别适合于固态物质的分离提取;(2)在接近常温条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;(3)传热速率快,温度易于控制;(4)适合于挥发性物质的分离。

超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。

但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。

目前国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction)。

德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研
究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而台湾亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农药残留及重金属的萃取与去除。

目前国际上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多。

超临界条件下的反应的研究成为重点,特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,国际上的这些动向值得我们关注。

由于超临界二氧化碳萃取技术在萃取后能将二氧化碳再次利用,把对环境的污染降至最低,所以未来传统工业若是能以超临界二氧化碳当作主要溶剂,那现在我们这颗唯一的地球,便能得到舒缓。

超临界二氧化碳萃取的优点有以下几点:(1)CO2临界温度和压力都较低,易于工业化;(2)CO2不可燃、无毒、化学稳定性好、易分离,不会产生副反应并且廉价易得;(3)CO2来源于化工副产物,应用过程中易于回收,能够减少温室气体的排放;(4)超临界CO2的溶解能力可通过流体的压力来调节。

(5)超临界CO2处理后的产物易纯化、无溶剂残留;(6)超临界CO2对高聚物有很强的溶胀和扩散能力;(7)超临界CO2对含氟和硅聚合物具有优良的溶解性。

超临界CO2萃取的特点决定了其应用范围十分广阔。

如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。

具体应用可以分为以下几个方面:(1)、从药用植物中萃取生物活性分子,生物碱萃取和分离;(2)、来自不同微生物的类脂脂类,或用于类脂脂类回收,或从配糖和蛋白质中去除类脂脂类;(3)、从多种植物中萃取抗癌物质,特别是从红豆杉树皮和枝叶中获得紫杉醇防治癌症;(4)、维生素,主要是维生素E的萃取;(5)、对各种活性物质(天然的或合成的)进行提纯,除去不需要分子(比如从蔬菜提取物中除掉杀虫剂)或
“渣物”以获得提纯产品;(6)、对各种天然抗菌或抗氧化萃取物的加工,如蜂胶、罗勒、串红、百里香、蒜、洋葱、春黄菊、辣椒粉、甘草和茴香子等。

同时,超临界二氧化碳还应用于材料加工,喷涂,发泡,增塑,清洗,制备超细微粒,聚合反应介质等。

21世纪的化学工业,医药工业等必须通过调整自身的产业结构和产品结构,研究开发清洁化生产和绿色工业的新工艺和新技术。

超临界流体技术就是近30年来迅速发展起来的这样一种新技术.我们应当从这个战略高度来认识超临界流体技术研究和推广应用的重要性,制定研究规划,加大投入,加强对该技术的基础和应用研究,使它真正用于工业化生产,造福于人类,造福于社会。

同时,超临界流体萃取技术还应用于食品,化妆品香料等领域。

在医药工业方面,西德Saarland大学的Stahl教授对许多药用植物采用SCFE法对其有效成分(如各种生物碱,芳香性及油性组分)实现了满意的分离。

在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不使药物变质非常困难,若采用SCFE法则完全可以符合要求。

美国ADL公司从7种植物中萃取出了治疗癌症的有效成分,使其真正应用于临床。

许多学者认为摄取鱼油和ω-3脂肪酸有益于健康。

这些脂类物质也可以从浮游植物中获得。

这种途径获得的脂类物质不含胆固醇,J.K.Polak等人从藻类中萃取脂类物质获得成功,而且叶绿素不会被超临界CO2萃出,因而省去了传统溶剂萃取的漂白过程。

另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效。

日本学者宫地洋等从药用植物蛇床子、桑白皮、甘草根、紫草、红花、月见草中提取了有效成分。

在化工方面,在美国超临界技术还用来制备液体燃料。

以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。

此外,从煤炭中还可以萃取硫等化工产品。

美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。

俄罗斯、德国还把SCFE法用于油料脱沥青技术。

在食品方面,传统的食用油提取方法是乙烷萃取法,但此法生产的食用油所含溶剂的量难以满足食品管理法的规定,美国采用超临界二氧化碳萃取法(SCFE)提取豆油获得成功,产品质量大幅度提高,且无污染问题。

目前,已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、棕榈、可可豆中提取油脂,且提出的油脂中含中性脂质,磷含量低,着色度低,无臭味。

这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。

专家们认为这种方法可以使油脂提取工艺发生革命性的改进。

咖啡中含有的咖啡因,多饮对人体有害,因此必须从咖啡中除去。

西德Max-plank煤炭研究所的Zesst博士开发的从咖啡豆中用超临界二氧化碳萃取咖啡因的专题技术,现已由西德的Hag 公司实现了工业化生产,并被世界各国普遍采用。

这一技术的最大优点是取代了原来在产品中仍残留对人体有害的微量卤代烃溶剂,咖啡因的含量可从原来的1%左右降低至0.02%,而且CO2的良好的选择性可以保留咖啡中的芳香物质。

美国ADL公司最近开发了一个用SCFE技术提取酒精的方法,还开发了从油腻的快餐食品中除去过多的油脂,而不失其原有色香味及保有其外观和内部组织结构的技术,且已申请专利。

化妆品香料方面天然香精香料的提取,用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。

啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。

传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。

超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。

美国SKW公司从啤酒花中萃取啤酒花油,已形成生产规模。

天然色素的提取,目前国际上对天然色素的需求量逐年增加,主要用于食品加工、医药和化妆品,不少发达国家已经规定了不许使用合成色素的最后期限,在我国合成色素的禁用也势在必行。

溶剂法生产的色素纯度差、有异味和溶剂残留,无法满足国际市场对高品质色素的需求。

超临界萃取技术克服了以上这些缺点,目前用SCFE法提取天然色素(辣椒红色素)的技术已经成熟并达到国际先进水平。

相关文档
最新文档