【趣味数学】高中数学校本课程:第10课时 立体几何趣题——正多面体拼接构成新多面体面数问题

合集下载

高中数学 立体几何 2.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(教师版)

高中数学 立体几何  2.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(教师版)

八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略. 五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 解: 162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .π36 解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,(3)题-1(引理)AC(3)题-2(解答图)AC∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36. (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+=οBC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V 球,类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, (6)题图(6)题直观图P图2-1补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .π229 解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S (3)正四面体的各条棱长都为2,则该正面体外接球的体积为 (3)解答题解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2 图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可1)21()23(222=+=R ),1=R ,球的体积为34π=球V ; (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 . 解:32=BC ,4120sin 322==οr ,2=r ,5=R ,π20=S ; (3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 .π16 解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ; 法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r , 3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);(3)题第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 . 解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V . (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .433 B .33 C .43 D .123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==οaR ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ; (4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π 解:选D ,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ; (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )AA.6 BC.3 D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球 类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .316πD .以上都不对解:选C , 法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==οR ,下略;第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)俯视图侧视图正视图解答图图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . 解:如图,3460sin 22221===οr r ,3221==r r ,312=H O , 35343121222=+=+=r H O R ,315=R ; 法二:312=H O ,311=H O ,1=AH , 352121222=++==O O H O AH AO R ,315=R ; (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为 π4(2)题-2(2)题-1→A(3)题解:如图,易知球心在BC 的中点处,π4=表S ;(1)题(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为 π6 解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO , 33sin 21=∠O OO ,36cos 21=∠O OO , 22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ; 法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为 π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d , 法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM , 4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --(4)题图的平面角的大小为ο120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,→抽象化(5)题解答图-2(5)题解答图-11B32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O , ∴2121=O O ,72120sin 21==οO O OM , 法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ; 法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V . 类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是 62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则 2622313133aa V V ABC P =⋅==-正方体,又Θr a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-, ∴263332a r a =,62a r =,∴内切球的表面积为(1)题D图8-1A图8-26422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为37解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCDS ⋅+==-328431表, ∴3743284=⋅+r , 771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则32解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABCP V , 另一表达体积的方式是r r S V ABC P ⋅++==-347331表, ∴3323473=⋅++r ,∴47332++=r习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 解:【A 】616164)2(2=++=R ,3=R【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA,则该三(2)题(3)题B棱锥的外接球体积等于 . 332π解:260sin 32==οr ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅ 【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==οR ,外接球半径32=R , 或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V , 4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:PAC ∆的外接圆是大圆,3460sin 22==οR ,32=R , 5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,81216)97(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为 .解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。

高三数学(理)多面体、立体综合人教版知识精讲

高三数学(理)多面体、立体综合人教版知识精讲

高三数学(理)多面体、立体综合人教版 【同步教育信息】 一. 本周教学内容: 多面体、立体综合 二. 重点、难点: 1. ⎪⎩⎪⎨⎧⎩⎨⎧→正棱柱直棱柱斜棱柱棱柱圆柱柱体 2. ⎩⎨⎧-正棱锥棱锥圆锥锥体 3. 多面体、简单多面体、凸多面体4. 正多面体,只有五种(正四、正六、正八、正十二、正二十)5. 欧拉公式:2=-+E F V【典型例题】[例1] 某简单几何体,由16个三角形围成,则这个几何体有个顶点。

解:2=-+E F V F=16 2431621=⋅⋅=E ∴1016224=-+=V[例2] 某简单几何体,由三角形围成,有10个顶点,其中四个顶点引出四条棱,6个顶点引出三条棱,则这个几何体有个面。

解:2=-+E F V V=10 17]3644[21=⋅+⋅=E F=9[例3] 正四面体ABCD ,棱长均为a ,则高=,体积,侧棱与底面所成角,侧面与底面所成角,内切球半径,外接球半径,AB 、CD 的距离。

解:E 为BC 中点,H 为BCD ∆垂心 ∴a DE 23= a DH 33=a EH 63=a AH 36=a AF 46=a HF 126= ∴ 解依次为:a 36,3122a ,33arccos ,31arccos ,a 126,a 46,a 22[例4] 半径为1的球的内接正四棱柱的体积的最大值。

解:设底面边长为a ,高为h ∴4)2(2222==+R h a h h h h h a V 221)22(322+-=⋅-== 02232=+-='h V 332=h ∴332=h 332=a 时,938max =V[例5] 直三棱柱111C B A ABC -中,AC=BC=AA 1=2,︒=∠90ACB ,E 、F 、G 为AC 、AA 1、AB 中点,求证:(1)//11C B 面EFG ;(2)求异面直线FG 与AC 1所成角;(3)求三棱锥EFG B -1的体积。

校本课程 趣味数学教案 周 受 萍

校本课程 趣味数学教案  周 受 萍

闽侯一中校本选修课程课程名称:趣味数学数学组周受萍《趣味数学》校本课程纲要一、课程开发原则与开发背景1、开发原则:《趣味数学》课程就是要把“数学有趣,数学有用,数学不难”的理念放在第一位,故名“趣味数学”。

本课程让学生在趣味化、生活化的数学教学活动中,自主地建构数学知识,创设轻松、活泼的教学氛围,使教学活动源于学生生活,源于学生好奇之事,引导学生积极运用自己有的生活经验去探索、去发现、去体验,让他们亲身感悟数学知识。

根据自己对中学数学节本的了解,设计出有趣的数学课程,对学生进行无痕的引导,降低学生接受的难度。

通过学生的探究和发现感受到有趣有用的数学。

同时体会我们中国古代光辉的数学成就,有信心学好数学。

游戏是学生很好的学习方式和途径,而数学语言却以简练和逻辑为特点。

为了把抽象的数学符号变为生动活泼的形象符号,让学生更乐于接受,更容易掌握,《趣味数学》将寓教于乐的传统教学理念移植到单调枯燥的数学教学中,让学生在潜移默化地掌握操作学习法、阅读学习法、迁移类推学习法、发现学习法、尝试学习法等众多学习方法,让学生通过饶有兴趣的认知方式轻松掌握所学的知识。

2、开发背景:“数学是思维的体操”。

作为一门研究数量关系与空间形式的科学,数学不仅具有高度的抽象性、严密的逻辑性,而且具有广泛的应用性。

数学以高度智力训练价值以及学科本身所具有的特点,为培养发展学生的创造性思维品质提供了极大的空间。

数学是学习现代科学技术必不可少的基础和工具,是基础教育的重要组成部分,通过数学思维训练,不仅使学生能够掌握渊博的数学知识,也使那些数学尖子有发挥自己特长的用武之地,更重要的是可以训练他们的思维,增强分析问题和解决问题的能力,促使学生发展,形式健全人格,具有终身持续发展能力的力量源泉。

开展教学思维训练活动,对于扩大学生的视野,拓宽知识,培养兴趣爱好,发展教学才能,提供了最佳的舞台,未来的数学家、科学家、诺贝尔奖金的获得者就在他们当中诞生。

趣味数学高中数学第10课时立体几何趣题正多面体拼接构成新多面体面数问题教学

趣味数学高中数学第10课时立体几何趣题正多面体拼接构成新多面体面数问题教学

立体几何趣题——第10课时正多面体拼接构成新多面体面数问题训练学生空间想象能力,动手动脑能力,提高学习数学兴趣教学要求:教学过程:一、问题提出“立体几何多面体”一节的课堂教学中,老师给出了一道例题:)》在《数学(高二下册所使一个表面重合,“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,他们通过直观感知,对于这个问题学生们表现出了极大的兴趣.得的新多面体有多少个面?”个面,两者各有一个面重叠,因此减少两个12提出了自己的看法:正四面体和正八面体共个面.面,所以重合之后的新多面体有10 二、故事介绍多年前美国的一次数学竞赛教师乘着学生浓厚的兴趣讲了一个与这道例题有关的故事.问重合一个面后还有几所有棱长都相等,中有这样一道题:一个正三棱锥和一个正四棱锥,个面,9大学教授给这道竞赛题的参考答案是7个面,他们认为正三棱锥和正四棱锥共个面?但佛罗里达州的一名参赛减少两个面,所以重合之后还有7个面。

两者各有一个面重叠,于是5个面,与参考答案不合而被判错误,对此丹尼尔一直有所疑惑,学生丹尼尔的答案是个面;他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5教授们接受了他的想法并改正了这道题的答他将自己的结论和实物模型提交给竞赛组委会,案。

三、操作确认请同学们拿出故事讲完后学生立刻对丹尼尔的结论进行了激烈地讨论.于是教师建议:学)来确认自己的结论.(课前分组做出上述两个问题的实物模型,通过自己的操作模型组合生展示大小不一的实物模型.教师让每个组的学生代表在讲台上演示实物模型的组合过全班同学明白丹尼尔结论的原因所在.同时也观察到了正四面体和正程.通过观察、讨论,这与学生们在上一节课通过直观感知所得的结论是不八面体重合之后新多面体只有七个面,原因在于他们发现在重合过程中正四面体和正八面体另有两个侧面分别拼接成一个一致的。

面了.四、思辩论证老师要求学生利用立体几何的相关知识,对操作实物模型得出的结论进行证明。

空间正多面体

空间正多面体

空间正多面体高中化学竞赛辅导专题讲座——三维化学第八节空间正多面体前面几节我们学习了五种正多面体,以及它们在化学中的应用。

此节我们将继续对这一内容进行讨论、总结与深化。

何为正多面体,顾名思义,正多面体的每个面应为完全相同的正多边形。

对顶点来说,每个顶点也是等价的,即有顶点引出的棱的数目是相同的,相邻棱的夹角也应是一样的。

那么三维空间里的正多面体究竟有多少种呢?【例题1】利用欧拉定理(顶点数-棱边数+面数=2),确定三维空间里的正多面体。

【分析】从两个角度考虑:先看每个面,正多边形可以是几边形呢?我们知道三个正六边形共顶点是构成平面图形的。

因此最多只可以是正五边形,当然还有正三角形和正方形;再看顶点,每个顶点至少引出三条棱边,最多也只有五条棱边(六条棱边时每个角应小于60°,不存在这样的正多边形)。

因此,每个面是正五边形时,三棱共顶点;正方形时,也只有三棱共顶点(四个正方形共顶点是平面的);正三角形时,可三棱、四棱、五棱共顶点(六个正三角形共顶点也是平面的),当然也可以说,一顶点引出三条棱边时可以为正三角形面、正方形面和正五边形面;一顶点引出四条棱边时只可以为正三角形面;一顶点引出五条棱边时也只可以为正三角形面——共计五种情况,是否各种情况都存在呢?(显然是,各种情况前面均已讨论)我们用欧拉定理来计算。

①正三角形,三棱共顶点:设面数为x,则棱边数为3x/2(一面三棱,二面共棱),顶点数为x(一面三顶点,三顶点共面),由欧拉定理得x-3x/2+x=2,解得x=4,即正四面体;②正三角形,四棱共顶点:同理,3x/4-2x+x=2,解得x=8,即正八面体;③正三角形,五棱共顶点:同理,3x/5-3x/2+x=2,解得x=20,即正二十面体;④正方形,三棱共顶点:同理,4x/3-2x+x=2,解得x=6,即正方体;⑤正五边形,三棱共顶点:同理,5x/3-5x/2+x=2,解得x=12,即正十二面体。

人教版高中数学必修2《基本立体图形—多面体》PPT课件

人教版高中数学必修2《基本立体图形—多面体》PPT课件

(4)棱台 定义及分类
定义:用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间那部分多面体叫做
棱台.
分类:由三棱锥、四棱锥、五棱锥……截
得的棱台分别为三棱台、四棱台、五棱
台……
记作棱台
正棱台
ABCD-A′B′C′D′
例题
将下列各类几何体之间的关系用Venn图表示出来:
多面体、长方体、棱柱、棱锥、棱台、直棱柱、四面体、 平行六面体.
基本立体图形(多面体)
高一年级 数学
立体几何是研究现实世界中物体的形状、大小与 位置关系的数学分支,在解决实际问题中有着广泛的 应用,在小学和初中我们已经认识了一些从现实物体 中抽象出来的立体图形,立体图形各式各样、千姿百 态,本节课我们将从空间几何体的整体观察入手,研 究它们的结构特征,学习它们的表示方法.
我们把棱柱中两个互相平行的面叫做棱柱的底面,它 们是全等的多边形;其余各面叫做棱柱的侧面,它们 都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱, 侧面与底面的公共顶点叫做棱柱的顶点.
记作棱柱 ABCDEFA′B′C′D′E′F′
分类:直棱柱,斜棱柱,正棱柱,平行六面体.
像金字塔这样的多面体,均由平面图形围成,其中一个面 是多边形,其余各面都是有一个公共顶点的三角形,这样 的多面体就是棱锥.
剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何 体的特征.
立体几何中常用割补法解题,将一个不规则的几何体 用一个平面分割成规则的几何体,这种方法蕴含了一 种构造思想,有利于提高同学们的创新思维品质.
如果我们用一个平行于棱锥底面的平面去截棱锥,其 中一部分还是棱锥,那么另一部分又是什么几何体呢? 我们把底面和截面之间的部分多面体就叫做棱台.

新教材2020-2021学年北师大版高中数学第二册课件-简单多面体-棱柱、棱锥和棱台

新教材2020-2021学年北师大版高中数学第二册课件-简单多面体-棱柱、棱锥和棱台

思考:1.有一个面是多边形,其余各面都是三角形的多面体是 棱锥吗?
提示:不一定是.只有当这些三角形有公共的顶点时才是棱 锥.
2.棱台的各侧棱延长线一定相交于一点吗?
提示:因为棱台是由棱锥截得的,所以棱台的各侧棱延长线一 定相交于一点.
1.下列棱锥有6个面的是( )
A.三棱锥
B.四棱锥
C.五棱锥
D.六棱锥
把例3的条件换为:如图所示,棱长为2 cm的 正方体ABCD-A1B1C1D1中,棱CC1的中点为M, 蚂蚁从点A出发沿表面爬行到点M,求蚂蚁爬行的 最短路线长.
[解] 由题意,若以BC为轴展开,则A,M两点连成的线段所在 的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距 离是 13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直 角三角形的两直角边的长度分别为1,4,故两点之间的距离是 17 cm.故沿正方体表面从点A到点M的最短路程是 13 cm.
③两个底面平行且相似,其余各面都是梯形的多面体是棱台;
④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.0个
B.1个
C.2个
D.3个
(2)下列说法正确的有________个. ①有一个面是多边形,其余各面都是三角形的几何体是棱锥. ②正棱锥的侧面是等边三角形. ③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱 锥.
(2) [(1)不正确,反例如图所示.(2)正确,由棱 柱定义可知,棱柱的侧棱相互平行且相等,所以侧面 均为平行四边形.
(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱 柱不一定是正方体.]
合作 探究 释疑 难
棱柱的结构特征
【例1】 下列命题中,正确的是( ) A.棱柱中所有的侧棱都相交于一点 B.棱柱中互相平行的两个面叫做棱柱的底面 C.棱柱的侧面是平行四边形,而底面不是平行四边形 D.棱柱的侧棱相等,侧面是平行四边形

名师辅导 立体几何 第10课 正多面体、球(含答案解析)

名师辅导 立体几何  第10课  正多面体、球(含答案解析)

名师辅导 立体几何 第10课 正多面体、球(含答案解析)●考试目标 主词填空1.多面体欧拉公式(1)欧拉公式V +F -E =2,是描述简单多面体的顶点数、面数、棱数之间特有规律的一个公式.2. 球的概念和性质(1)定义:半圆以它的直径为旋转轴旋转所成的曲面叫做球面,球面所围成的几何体叫球体,简称球.3.球面的距离 在球面上,两点之间的最短连线的长度,就是经过这两点大圆在这两点间的一段劣弧的长度,这个弧长叫做两点的球面距离.4.球的表面积和体积球的表面积和体积都是球半径R 的函数.(1)半径为R 的球表面积公式是:S =4πR 2,(2)半径为R 的球体积公式是:S =334R π.●题型示例 点津归纳【例1】 已知铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶有24个顶点,每个顶点处都有三条棱,计算单晶铜的两种晶面的数目.【解前点津】 设三角形晶面有x 个,八边形晶面有y 个.则单晶铜的面数F =x +y ,且棱数E =21(3x +8y ). 又因为铜的单晶的顶点数V =24,且每个顶点处都有3条棱所以棱数 E =21×(3×24)=36 由欧拉公式得 24+(x +y )-36=2 所以x +y =14,再由21(3x +8y )=36 可解得x =8,y =6所以单晶铜的三角形晶面有8个,八边形晶面有6个.【解后归纳】 本题考查多面体,凸多面体和多面体的欧拉定理及其应用.【例2】 一个简单多面体共有16个顶点,每个顶点都引出3条棱,且只有三角形和五边形两种面,求该简单多面体中三角形和五边形的数目各是多少?【解前点津】 设该简单多面体中三角形和五边形数目分别为x 个、y 个,一方面可根据欧拉定理计算棱数,另一方面可由各面边数计算棱数,这样可以得到一个二元一次方程组,求解即可.【规范解答】 设三角形有x 个,五边形有y 个,∵共有16个顶点,每个顶点引出三条棱,∴棱数E =2316⨯=24, 一方面相邻两个面的两条边重合为一条棱, ∴棱数为253y x +,∴253y x +=24 ① 另一方面,由题意知面数F =x +y ,由欧拉定理得:16+(x +y )-24=2 ②由①②联立可得:x =1,y =9,即三角形面有1个,五边形面有9个.【例3】 一个圆锥形漏斗口的内周长为8πcm .漏斗深9.6cm ,将一个球放进漏斗里,球的最高点比漏斗口所在平面高出2.4cm ,求球的体积.【解前点津】 作出轴截面图.【规范解答】 作共同的轴截面图(如图),得等腰△PAB 和圆O ,球的最高点C ,球心O 和圆锥顶点P 三点共线,D =AB ∩PC ,依题设:PD =9.6,CD =2.4,AD =428=ππ. 过C 作A 1B 1∥AB 与PA 、PB 的延长线分别交于点A 1、B 1,则A 1B 1与圆O 相切于C . 且有25.16.9121===PD PC AD C A . ∴A 1C =1.25AD =5.PA 1=.13221=+PC C A记PA 1与圆O 的切点为E ,则A 1C =A 1E ,且△PEO ∽△PCA 1, 得C A OE PC PE 1=,PE =PA 1-A 1E =13-5=8, ∵OE =3101=⋅PC C A PE , 即得球半径R =310,所以它的体积为814000343π=π=R V (cm 3). 【解后归纳】 作出圆锥与球共同的轴截面,则圆锥与球的重要几何量与几何关系都在这一平面图形上充分展现出来了,通过对此平面图形的分析,即可求出球半径,从而求得球体积.【例4】 在北纬45°的纬度圈上有A 、B 两点,它们分别在东经70°与东经160°的经度圈上,设地球半径为R ,求A 、B 两点的球面距离.【规范解答】 如图,设北纬45°圈的圆为O 1,地球中心为O ,则∠AO 1B =160°-70°=90°,∠OBO 1=45°,OB =R .∴O 1B =O 1A =R 22,AB =R , 连接AO ,AB ,则AO =BO =AB =R , ∴∠AOB =60°,∴=61·2πR =31πR . 故A 、B 两点间的球面距离为31πR . 【解后归纳】 为求A 、B 两点间球面的距离,要把它组织到△AOB 中去分析,只要求得∠AOB 的度数便可求得球面距离,注意余弦定理的应用.●对应训练 分阶提升一、基础夯实1.正三棱锥是正四面体的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件2.正六面体的顶点数V 和棱数E 分别是 ()例3题图例4题图A.V =8,E =12B.V =12,E =8C.V=6,E =8D.V =6,E =103.球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么球的半径为 ( ) A.43 B.23 C.2 D. 3 4.正十二面体的面是正三角形,且每一个顶点为其一端都有五条棱,则其顶点数V 和棱数E 的值应是( )A.V =30,E =12B.V=12,E =30C.V=32,E =10D.V=10,E =325.在底面直径为2的等边圆柱中,分别以两底为底面,以圆柱的轴上任一点为顶点的两个圆锥的体积之和是(轴截面为正方形的圆柱称为等边圆柱) ( ) A.34π B.32π C. 3π D.值不确定 6.设正多面体的每个面都是正n 边形,以每个顶点为端点的棱有m 条,棱数是E ,面数是F ,顶点数是V ,则它们之间的关系不正确的是 ( )A.nF =2EB.mV =2EC.V +F =E +2D.mF =2E7.把一个半径为R 的实心铁球熔化后铸成两个小球(不计损耗),两个小球的半径之比为1∶2,则其中较小球半径为 ( ) A.R 31 B.R 333 C.R 5253 D.R 33 8.在地球表面北纬60°线上有两点,它的经度差为180°,则A 、B 两点的纬度线的距离与A 、B 两点的球面距离之比为 ( )A.1∶3B.2∶3C.3∶2D.3∶59.半径为R 的三个球两两外切放置桌面上,与这三个球都外切的第四个小球也放在桌面上,则小球的半径为 ( )A.RB.21RC.31R D.R 32 10.已知过球面上三点A 、B 、C 的截面与球心距离等于球半径的一半,且AB =BC =CA =2,则球的半径等于 ( )A.1B.34C.32 D.332 二、思维激活11.一个简单多面体每个顶点处都有三条棱,则它的顶点数V 和面数F 的关系是 .12.半球内有一内接正方体,则这半球的全面积与正方体的全面积之比为 .13.在120°的二面角内,放一个半径为5 cm 的球切两半平面于A 、B 两点,那么这两个切点在球面上最短距离是 .14.地球半径为6 370km ,地球表面北纬30°圈上有A 、B 两个卫星地面接收站,它们在北纬 30°圈上的距离是336370πkm ,则这两地间的经度差是 . 三、能力提高15.求证:正四面体的二面角与正八面体的二面角互为补角.16.制作两个正四面体的模型,再把它们拼成一个六面体,观察一下这个六面体是否为正六面体.17.C 70分子有70个顶点,以每个顶点为一端都有3条棱,各面是五边形或六边形,求C 70分子中五边形和六边形的个数.18.如图所示,三棱锥V —ABC 中,VA ⊥底面ABC ,∠ABC =90°.(1)求证:V 、A 、B 、C 四点在同一球面上.(2)过球心作一平面与底面内直线AB 垂直.求证:此平面截三棱锥所得的截面是矩形.19.如图所示,在棱长为a 的正方体AC 1中求,(1)过BD 1所作的最小截面面积;(2)过BD 1所作截面周长最小时的截面面积.第10课 正多面体、球习题解答1.B 正四面体为正三棱锥,而正三棱锥不一定为正四面体.2.A 由欧拉定理可得.3.B 设球半径为R ,小圆半径为r ,则2πr =4π,∴r =2.设这三点为A 、B 、C ,球心为O ,则根据球面距离意义可知∠AOB =∠BOC =∠COA =362π=π. 第18题图第19题图∴△ABC 为正△且边长为R ,又r 为△ABC 外接圆半径.∴r =R AB 3333=,∴R =3r =23. 4.B 顶点为12个,棱数E =30.5.B 画图运用等边圆柱的概念即得.6.D 只有mF =2E 不正确.7.B 设较小的半径为r , ∴34πr 3+34π(2r )3=34πR 3,∴r =333R . 8.C 2:3360cos 221RR π︒⋅π⋅. 9.C 设第四个小球的半径为x , ∴x +.)32232()(22R R R x =⋅⋅-+ 解得:x =3R . 10.B 32232222⋅⋅=⎪⎭⎫ ⎝⎛-R R ,∴R =34. 11.V =2F -4 利用多面体结构特点易知. 12.43π 如图设正方体棱长为x ,球半径为R , ∴R =.262222x x x =⎪⎪⎭⎫ ⎝⎛+ S 半球全=21·4πR 2+πR 2=3πR 2, S 正方体=6x 2=6·262⎪⎪⎭⎫ ⎝⎛R =4R 2, ∴.434322π=π=R R S S 正方体半球全 13.35π 两切点对球心的张角为3π,∴球面距为35π . 14.120° 北纬30°圈的半径为6370·23, ∴6370·23·θ=6370·23π, ∴θ=32π,即经度差为120°. 15.设正四面体有S —ABC 和正八面体AC 的棱长都为a ,正四面体的二面角为α,正八面体的二面角为2β. 易求得tan α=22 (0<α<2π). 在正八面体AC 中,连EF 交截面ABCD 于O ,取AB 的中点G .连EG 、FG 、OG ,则EG ⊥AB ,FG ⊥AB ,所以∠EGF 为二面角的平面角.由对称性知∠EGO =∠OGF =β,又EG =23a ,GO =21a ,∴EO =a 22. 第12题图解∴tan ∠EGO =tan ∠β=2222=aa . ∴tan2β=22tan 1tan 22-=β-β(0<2β<π) ∴α与β互补. 16.不是正六面体,正六面体即为正方体.17.设C 70分子中五边形和六边形分别有x 个和y 个,C 70分子这个多面体的顶点数V =70,面数F =x +y ,棱数E =21(3×70) ,根据欧拉公式,可得70+(x +y )-21(3×70)=2, 由棱数相等有:21(5x +6y )= 21×(3×70). 解得:x =12,y =25∴C 70分子中五边形有12个,六边形有25个.18.(1)取VC 的中点M ,∵VA ⊥底面ABC ,∠ABC =90°,∴BC ⊥VB ,在Rt △VBC 中,M 为斜边 VC 的中点.∴MB =MC =MV ,同理在Rt △VAC 中,MA =MV =MC ,∴MV =MC =MA =MB ,∴V 、A 、B 、C 四点在同一圆面上,M 是球心.(2)取AC ,AB ,VB 的中点分别为N 、P 、Q ,连结NP 、PQ 、QM 、MN .则MNPQ 就是垂直于AB 的三棱锥V —ABC 的截面,易证PQMN 是平行四边形,又VA ⊥BC ,PQ ∥VA ,NP ∥BC ,∴QP ⊥PN ,故截面MNPQ 是矩形.19.这是一道有关立体几何最值问题的题目,比较综合,我们可对本题作简单分析:(1)设经过BD 1的截面为BMD 1N ,因为正方体相对侧面平行,故BMD 1N 是平行四边形,这样S 截=2S △BMD 1显然欲使S 截最小,只需S △BMD 1最小,而BD 1为定值,故只需M 到BD 1的距离最小,M 可在AA 1上移动,所以这个问题可转化为求异面直线AA 1与BD 1之间的距离,而求异面直线间的距离又可化为线面间的距离(AA 1与面BB 1D 1D 间的距离)(2)沿侧棱将侧面AD 1与侧面AB 1展开如图所示,D 1M +MB 的最小值就是侧面展开图中的D 1B ,设D 1B 与AA 1交于M ,由于侧面为全等的正方形,故M 为AA 1的中点,同理N 为CC 1的中点,此时MB ∥ND 1为所求截面.第19题图解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10课时立体几何趣题——
正多面体拼接构成新多面体面数问题
教学要求:训练学生空间想象能力,动手动脑能力,提高学习数学兴趣
教学过程:
一、问题提出
在《数学(高二下册)》“立体几何多面体”一节的课堂教学中,老师给出了一道例题:“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,使一个表面重合,所得的新多面体有多少个面?”对于这个问题学生们表现出了极大的兴趣.他们通过直观感知,提出了自己的看法:正四面体和正八面体共12个面,两者各有一个面重叠,因此减少两个面,所以重合之后的新多面体有10个面.
二、故事介绍
教师乘着学生浓厚的兴趣讲了一个与这道例题有关的故事.多年前美国的一次数学竞赛中有这样一道题:一个正三棱锥和一个正四棱锥,所有棱长都相等,问重合一个面后还有几个面?大学教授给这道竞赛题的参考答案是7个面,他们认为正三棱锥和正四棱锥共9个面,两者各有一个面重叠,减少两个面,所以重合之后还有7个面。

但佛罗里达州的一名参赛学生丹尼尔的答案是5个面,与参考答案不合而被判错误,对此丹尼尔一直有所疑惑,于是他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5个面;他将自己的结论和实物模型提交给竞赛组委会,教授们接受了他的想法并改正了这道题的答案。

三、操作确认
故事讲完后学生立刻对丹尼尔的结论进行了激烈地讨论.于是教师建议:请同学们拿出课前分组做出上述两个问题的实物模型,通过自己的操作(模型组合)来确认自己的结论.学生展示大小不一的实物模型.教师让每个组的学生代表在讲台上演示实物模型的组合过程.通过观察、讨论,全班同学明白丹尼尔结论的原因所在.同时也观察到了正四面体和正八面体重合之后新多面体只有七个面,这与学生们在上一节课通过直观感知所得的结论是不一致的。

原因在于他们发现在重合过程中正四面体和正八面体另有两个侧面分别拼接成一个面了.
四、思辩论证
老师要求学生利用立体几何的相关知识,对操作实物模型得出的结论进行证明。

学生对照实物模型提出了证明思路:将正八面
体和正四面体拼接的两个侧面想象成两个半平
面拼接成一个平面即表示这两个半平面所构成
180.证明如下:如图1,在正八面
的二面角为
体AC中,连结AC交平面BE于点O.设正八
面体的棱长为1,BF的中点为D,连结AD、
CD,易得∠ADC为二面角A―BF―C的平面
角。

AD=DC=23,AC=2AO=,241432=-由余弦定理得3
1-=∠ADC COS 。

仿上可求得正四面体邻棱所成的二面角θ的余弦值为3
1。

由上可知 180=∠+ADC θ,因此新多面体是七面体。

五、问题扩展
理论证明的给出进一步完善了学生对问题的全面理解,同时也激发了学生的多向思维.证明结结束后,立刻就有学生向老师提出了问题: 如果再拼一个同样的正四面体,又有多少个,又有多少个面呢?面对学生的问题,教师立刻利用学生的实物模型进行操作确认,从而发现新多面体的面数并不确定,而是依赖于拼接四面体在八面体上的位置.进一步,当拼接更多的四面体时问题更复杂了,但却激发了学生更大的兴趣.在激烈地争论中,师生的思考一度陷入僵局.余是老师提出能否看看不同情况下新多面体可能新多面体最少面数.这一问题得到了学生的认可,新一轮实物模型的操作确认开始,很快学生得出了结论:当两个正四面体时,新多面体最少为6个面,构成一个六面体(如图2).
当拼接三个正四面体时,新多面体最少为5个面,构成一个棱台如图(3).
当拼接四个正四面体时,新多面体最少为4个面构成一个正四面体(如图4).
本节小结:学习数学不要只靠我们的直觉,而要有推理论证检验。

相关文档
最新文档