100t水泥罐基础设计计算
拌和站水泥罐基础设计计算书

拌和站水泥罐基础设计计算书1、水泥罐基础设计拌合站投入5个100t型水泥罐,100t型水泥罐直径3m,支腿邻边间距2.05m;按3个水泥罐一排、2个水泥罐一排共计两排设立。
根据公司以往拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足三个水泥罐同时安装。
基础尺寸8m(长)×4m(宽)×1.9m(高),基础埋深1.5m,外漏0.4m,承台基础采用Φ16@200mm×200mm上下两层钢筋网片,架立筋采用450mm×450mmφ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
具体布置见下图:水泥罐平面位置示意图2、水泥罐基础计算书2.1、计算基本参数水泥罐自重约10t,水泥满装100t,共重110t。
水泥罐支腿高3m,罐身高15m,共高18m。
单支基础4m×4m×1.9m钢筋砼。
2.2、地基承载力计算计算时按单个水泥罐计算单个水泥罐基础要求的地基承载力为:δ1=1100÷(4×4)+1.9×25=68.75+47.5=116.25KN/m2=0.12Mpa根据《临湘(湘鄂界)至岳阳公路第四合同段两阶段施工图设计》第六册中的岩土设计计算参数表资料可知:本合同段全风化花岗岩承载能力基本容许值为[fa0]=0.25Mpa,因δ1≤[fa0]。
现场临建设施工时,为安全起见,基础底面参照一级公路标准施工。
故远大于水泥罐地基承载力要求。
2.3、抗倾覆计算参照《临湘(湘鄂界)至岳阳公路第四合同段两阶段施工图设计》第一册,本合同段地区按最大风速25m/s。
(1)风荷载强度计算:W0⋅K3⋅K2⋅K1=风荷载强度计算:W其中基本风压:v2252391Pa 1.61.6===W0风载体形系数:K1=0.8风压高度变化系数:K2=1.0地形、地理变化系数,按一般平坦空旷地区取K3=1.0391=312.8pa⨯1.0⨯1.0⨯0.8=W(2)风力计算:水泥罐体按通体罐接受水平风荷载计算,所受水平风荷载为:F=A×W=3.4×18×312.8=19143N=19.14KN平均作用高度为18/2+1.9=10.9m倾覆力矩M=F×H=19.14×10.9=208.6KN·m(3)抗倾覆计算:抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。
吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。
根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。
基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
具体布置见下图:.1单支基础4m ×4m ×0.8m 钢筋砼。
2、地基承载力计算计算时按单个水泥罐计算单个水泥罐基础要求的地基承载力为:δ1=21700+0.825106.3+20126.3k /m 0.1344N MPa ⨯===⨯ 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为:水泥罐平面位置示意图δ2= ()1301000 1.413460200MPa ⎡⎤⨯=⎢⎥⨯⎣⎦因δ1≤δ2,即地基承载力复核要求。
3、抗倾覆计算武汉地区按特大级风荷载考虑,风力水平荷载为500N/m 2,抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。
水平风荷载产生的弯矩为:0.5 3.3182+3=356.4KN M =⨯⨯⨯÷(18)M水泥罐空罐自重20t ,则基础及水泥罐总重为:抗倾覆极限比较:即水泥罐的抗倾覆满足要求,水泥罐是安全的。
4、基础配筋基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。
水泥罐设计

水泥罐基础设计书一、100T水泥罐基础计算本工程选用100T水泥罐进行承载力验算。
场地基承载力特征值为300Kpa。
基础承台平面尺寸设定为2500mm×2500mm,高度为800mm。
承台混凝土强度等级均为C20。
1.1水泥罐计算1.1.1参数信息水泥罐型号:100T水泥罐,自重(满罐时包括水泥总量在内)F1=1060.00KN(水泥满载1000KN,罐体自身总重为60KN)水泥罐高度H=19.400m,水泥罐身宽度B=3.00m,,罐体支撑架宽度为1.91m。
混凝土强度:C20,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=2.500m承台厚度Hc=0.8m,基础埋深D=0.6m,承台箍筋间距S=150mm,承台单层钢筋采用φ18@150,双向布置,保护层厚度:50mm福清风荷载为0.75KN/m2。
1.1.2地基基础承载力验算依据<<建筑地基基础设计规范>>(GB50007-2002)第5.2条承载力计算。
Pmax=(F+G)/A+M/W;式中F:水泥罐作用于基础的坚向力,它包括水泥罐自重及满罐时的水泥总量,F=1.2×1060=1272KN。
G:基础自重和基础上面的土重,G=25.0×(2.5×2.5×0.8)×1.2=150KN;Bc:基础底面的宽度,取Bc=2.50m,A=2.5×2.5=6.25m2;W:基础底面的抵抗矩,W=Bc×Bc×Bc/6=2.6m3;M:倾覆力矩,主要风荷载产生的力矩,M=1.4×0.75×3.0×19.4×1.91=116.72KN.m;a:合力作用点至基础底面最大压力边缘距离(m),按下式计算:A=2.50/2-116.72/(1272+150)=1.168经过计算得到:最大压力设计值:Pmax=(1272+150)/6.25+116.72/2.6=272.41kpa 偏心距较大时压力设计值:Pkmax=2×(1272+150)/(3×3×1.8)=267.79kpa地基基础承载力验算:强夯地基承载力值为:fa=300.00kpa地基承载力特征值fa=300.00kpa大于最大压力设计值Pkmax=267.79kpa,满足要求。
(完整版)拌合站、水泥罐、搅拌站地基计算

目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
水泥罐基础设计计算书

水稳拌合站投入两个100t型水泥罐,100t型水泥罐直径3m,支腿邻边间距2.05m。
根据以往水稳拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。
基础尺寸8m(长)×4m(宽)×1.5m(高),基础埋深1.2m,外漏0.3m,承台基础采用Φ16@250mm×250mm上下两层钢筋网片,架立筋采用750mm×750mmφ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
具体布置见下图:.水泥罐平面位置示意图1、计算基本参数水泥罐自重约20t ,水泥满装150t ,共重170t 。
水泥罐支腿高3m ,罐身高18m ,共高21m 。
单支基础4m ×4m ×0.8m 钢筋砼。
2、地基承载力计算计算时按单个水泥罐计算单个水泥罐基础要求的地基承载力为:δ1=21700+0.825106.3+20126.3k /m 0.1344N MPa ⨯===⨯ 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为:δ2= ()1301000 1.413460200MPa ⎡⎤⨯=⎢⎥⨯⎣⎦因δ1≤δ2,即地基承载力复核要求。
3、抗倾覆计算武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2,抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。
水平风荷载产生的弯矩为:0.5 3.3182+3=356.4KN M =⨯⨯⨯÷(18)•M水泥罐空罐自重20t ,则基础及水泥罐总重为:G=1709.8+440.825=1986KN ⨯⨯⨯⨯ 抗倾覆极限比较:356.430.18<0.519866M F === 即水泥罐的抗倾覆满足要求,水泥罐是安全的。
4、基础配筋基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。
水泥罐基础设计计算书

水稳拌合站投入四个100t 型水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m 。
根据以往水稳拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。
基础尺寸8m (长)×4m (宽)×1.5m (高),基础埋深1.2m ,外漏0.3m ,承台基础采用Φ16@250mm ×250mm 上下两层钢筋网片,架立筋采用750mm ×750mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
具体布置见下图:.架立筋-1号111-1剖面1号3号5070050基础配筋图2号80004000354502050?320罐支脚80004000220600600?33003700水泥罐平面位置示意图1、计算基本参数水泥罐自重约20t ,水泥满装150t ,共重170t 。
水泥罐支腿高3m ,罐身高18m ,共高21m 。
单支基础4m ×4m ×0.8m 钢筋砼。
2、地基承载力计算计算时按单个水泥罐计算单个水泥罐基础要求的地基承载力为:δ1=21700+0.825106.3+20126.3k /m 0.1344N MPa ⨯===⨯ 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为:δ2= ()1301000 1.413460200MPa ⎡⎤⨯=⎢⎥⨯⎣⎦因δ1≤δ2,即地基承载力复核要求。
3、抗倾覆计算武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2,抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。
水平风荷载产生的弯矩为:0.5 3.3182+3=356.4KN M =⨯⨯⨯÷(18)•M水泥罐空罐自重20t ,则基础及水泥罐总重为:风荷载(500N/m2)G=1709.8+440.825=1986KN ⨯⨯⨯⨯ 抗倾覆极限比较:356.430.18<0.519866M F === 即水泥罐的抗倾覆满足要求,水泥罐是安全的。
水泥罐基础地基承载力计算书

新建铁路成都至贵阳线乐山至贵阳段CGZQSG-标段四川公路桥梁建设集团有限公司成贵铁路项目经理部1号混凝土拌和站地基承载力计算书四川公路桥梁建设集团有限公司成贵铁路CGZQSG-6标段项目经理部二0—四年三月?宜宾新建铁路成都至贵阳线乐山至贵阳段CGZQSG-标段四川公路桥梁建设集团有限公司成贵铁路项目经理部1号混凝土拌和站地基承载力计算书编制:__________________复核:___________________审核:___________________四川公路桥梁建设集团有限公司成贵铁路CGZQSG-际段项目经理部二0—四年三月?宜宾四川公路桥梁建设集团有限公司成贵铁路项目经理部1号混凝土拌和站地基承载力计算书1编制说明本方案编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥贮藏量,保证工程顺利进行,本工程计划投入8座100T水泥罐。
2编制范围四川公路桥梁建设集团有限公司成贵铁路项目经理部1号混凝土拌和站。
3编制依据1、施工现场总平面布置图;2、水泥罐总示意图及基础图参数3、成贵铁路施工图4、《建筑结构荷载规范》GB50009-2012。
4水泥罐基础设计1、本水泥罐基础根据现场实际地质情况,采用扩大基础,每个水泥罐基础为4000 X 4000 x 1000mm根据现场需要,一台HLS90拌和站配置4座100T水泥罐,故4座水泥罐扩大基础连成一个环形基础。
基础采用C25钢筋砼,钢筋为双层配筋,钢筋为© 12。
2、每个水泥罐下设计四个支座,支座设计为C25砼,800 X 800 x 500mn立方体。
每个支座对应水泥罐罐脚处预埋4根© 20钢筋,以加强承台和基础的连接;3、水泥罐预埋板采用3 20mnQ235钢板,再焊接9根© 25锚固钢筋,锚固筋穿过支座与扩大基础钢筋网相焊接。
预埋板安装时每个预埋板四个角高程误差在1mn内,每个水泥罐4个预埋板高程误差在2mm 以内。
混凝土搅拌站水泥罐基础设计

100t 水泥罐基础设计计算书一、工程概况某大型工程混凝土搅拌站采用100t 水泥罐,水泥罐直径,顶面高度20m;水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×;二、设计依据:1、建筑结构荷载规范2006版GB50009-20012、混凝土结构设计规范GB50010-20103、建筑地基基础设计规范GB50007-20114、钢结构设计规范GB50017-2003;三、荷载计算1、水泥罐自重:8t ;满仓时水泥重量为100t;2、风荷载计算:宜昌市50年一遇基本风压:ω0=㎡,风荷载标准值: ωk =βz μs μz ω0其中:βz =,μz =,μs =,则:ωk =βz μs μz ω0=×××= kN/㎡四、水泥罐基础计算1、地基承载力验算考虑水泥罐满仓时自重荷载和风荷载作用;水泥罐满仓时自重荷载:G k =1000+80=1080kN混凝土基础自重荷载:G ck =××+×××24=407kN风荷载:风荷载作用点高度离地面,罐身高度15m,直径;Fwk=×15×=风荷载对基底产生弯矩:Mwk=×+2=·m基础底面最大应力:pk,max= 错误!+ 错误!= 错误!+ 错误!=;2、基础配筋验算1 基础配筋验算混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算;混凝土基础承受弯矩:Mmax=×错误!×207××=362kN按照单筋梁验算:αs= 错误!= 错误!=ξ=1-错误! =1-错误! =<ξb=As=错误!= 错误!=1403mm2在基础顶部及底部均配筋13Φ16,As实=13×201=2613mm2 > As=1403mm2,基础配筋满足要求;2 基础顶部承压验算考虑水泥罐满仓时自重荷载和风荷载作用;迎风面立柱柱脚受力:F1k= 错误!- 错误!= 错误!- 错误!=270-69=276kN 背风面立柱柱脚受力:F2k= 错误!+ 错误!= 错误!+ 错误!=270+69=339kN背风面立柱柱脚受力最大,F2d = F2k=基础顶部预埋件钢板尺寸600mm×600mm,混凝土承受压力:σ= 错误!= 错误!=<f c=,基础顶部局部承压受力满足要求;五、空仓时整体抗倾覆稳定性计算考虑水泥罐空仓时自重荷载和风荷载作用;水泥罐空仓时自重荷载:G0k=80kN混凝土基础自重荷载:Gck=256kN倾覆力矩作用点取背风面基础边缘,安全系数:K= 错误!= >,水泥罐抗倾覆稳定性满足要求;六、柱脚预埋件验算空水泥罐在风荷载作用下,迎风面柱脚受拉力:Nk= 错误!-错误!= 错误!- 错误!=69-20=49kN风荷载在柱脚产生剪力:Vk= 错误!= 错误!=柱脚预埋件承受拉剪共同作用,预埋件钢板尺寸600m m×600mm×20mm,锚栓共4根,直径24mm,As=4×353=1809mm2 ;预埋件锚栓面积需满足:As≥错误!+ 错误!αr =, αv=错误!= ×24 错误!=αb=+d=+×20/24=,代入上式:错误!+ 错误!= 错误!+ 错误!=458mm2<A s=1809mm2, 预埋件共采用4根直径24mm锚栓,可以满足要求;锚栓锚固长度:l ab≥ α 错误!d=×215/×24=650mm,实际锚固长度取750mm,可以满足要求;六、结论1、水泥罐基础采用尺寸××的 C25钢筋混凝土基础,基础受力满足要求;2、为保证水泥罐基础安全,要求混凝土基础地基承载力不得小于200kPa;3、水泥罐在风荷载作用下的抗倾覆稳定性满足要求;4、水泥罐柱脚预埋件强度满足要求;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100t水泥罐基础设计计算
一、荷载
1、水泥罐自重G1:200kn(20t)估
2、水泥自重G2:1000kn(100t)
3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn
4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn
二、受力分析
1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn
2、桩承载力需达到1981.2kn-1732.8kn=248.4kn
三、单桩承载力计算
1、土层极限侧摩阻力系数
J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m
①素填土①素填土①素填土
0.44m 0.41m
0.88m
③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土
-1.72m
-4.76m
④粉土-5.79m
④粉土④粉土
根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。
打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范
围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa
2、单根桩承载力计算
单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力)
式中:[P]------沉桩容许承载力
U--------桩周长,
а-----震动沉桩影响系数,锤击沉桩取1.0
H------桩入土深度,9.0m
τ-----桩侧土的极限摩阻力,取18.45Kpa;
①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图:
3.8m
0.650m 2.5m 0.650m
3.8m
②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。
③如采用截面为25cm*25cm预制混凝土方桩桩,则单桩的容许承载力为:
[P]=1/1.5*(U*а*H*τ)=1/1.5*1.0*1.0*9*18.45=110.7kn,
需打入的根数为248.4kn/110.7kn=2.24根,取3根,布置图同273钢管。
三、结论
根据经济性及采购方便程度,本工程采用截面为25cm*25cm预制混凝土方桩桩,单根长9m(入土9m),三个水泥罐共需3根*3=9根。