九年级数学上册第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质习题课件 新人教版
旋转的概念及性质

解:(1)能.连接CF,BE,分别作其线段的垂直平分线,其交点Q1 即为所求的旋转中心 (2)能.连接AM,BN,分别作其线段的垂直 平分线,其交点Q2即为所求的旋转中心
13.如图,四边形ABCD和四边形AEFG都是矩形,E在AD上, 如果矩形ABCD旋转后能与矩形AEFG重合,那么: (1)旋转中心是哪一点?
5.如图,将△AOB绕点O按逆时针方向旋转45°后得到 △A′OB′,若∠AOB=15°,则∠AOB′的度数是( ) B A.25° B.30° C.35° D.40°
6.(2015·哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将 △ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′ ,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大 C 小是( ) A.32° B.64° C.77° D.87°
则旋转角的度数为____. 50°
12.(1)如图①,△ABC≌△DEF,△DEF能否由△ABC通过一次 旋转得到?若能,请用直尺和圆规画出旋转中心;若不能,试简要 说明理由; (2)如图②,△ABC≌△MNK,△MNK能否由△ABC通过一次旋 转得到?若能,请用直尺和圆规画出旋转中心;若不能,试简要说 明理由. (保留必要的作图痕迹)
的斜边与射线OA的夹角α为____ . 22°
9.(练习1变式)如图,把一个直角三角尺ACB绕着30°的顶点B 顺时针旋转,使得点A与CB的延长线上的点E重合. (1)三角尺旋转了多少度? (2)连接CD,试判断△CBD的形状; (3)求∠BDC的度数. 解:(1)150° (2)等腰三角形 (3)15°
60°,∴△PAD是等边三角形,∴∠DAP=∠PDA=60°,
∴∠PDC=∠PAE=30°,∠PAB=30°,∴∠BAE=60°,又CD =AB=EA,∴△ABE是等边三角形
人教版九年级上册数学同步课件-第23章-23.1 第1课时 旋转的概念与性质

F
B D
O C
★旋转的性质 (1)旋转前后的图形全等; (2)对应点到旋转中心的距离相等; (3)对应点与旋转中心所连线段的夹角等于旋转角.
随堂即练
1. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知 ∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角= 44 ° .
随堂即练
填一填:
若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转中心是___O___,
旋转角是_∠_A__O_B____,旋转角等于_6_0__度,其中的对应点有
_A_与__B___、 _B_与__C___、 _C_与__D___、 _D_与__E___、 _E__与__F__、
_F__与__A__ .
怎样来定义 这种图形变换?
新课讲解
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
★旋转的定义
新课讲解 P
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
这个定点O称为旋转中心.
O
旋转中心
旋转角 120
P′
B
A C
O
F
D
E
2 旋转的性质
A
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转 动硬纸板,再描出这个挖掉的三角 形(△DEF),移开硬纸板.
C O
F
E
新课讲OA
随堂即练
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得
人教版数学九年级上册学案23.1《图形的旋转》(含答案)

第二十三章旋转23.1 图形的旋转第1课时认识图形的旋转出示目标1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.预习导学1知识准备(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?(是;是;等腰梯形、长方形、正多边形等.)点拨:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.自学指导:自学教材内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:①从3时到5时,时针转动了多少度?(60°)②风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90°)③以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?探究把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.合作探究1活动1 小组讨论例1 如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)经过旋转,点A、B、C、D分别移到什么位置?点拨:(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.例2 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点A;旋转的度数是45°.活动1 小组讨论例3 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.点拨:关键是确定△ADE三个顶点的对应点的位置.活动2 跟踪训练1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.①此图能否旋转某一部分得到一个正方形?②若能,指出由哪一部分旋转而得到的?并说明理由.③它的旋转角多大?并指出它们的对应点.解:①能.②由△BCQ绕B点旋转得到.理由:连结AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.③90°.点C对应点A,点Q对应点P.2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°.∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的.∴BK=DM.课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.第2课时旋转作图出示目标1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2.掌握根据需要用旋转的知识设计出美丽的图案.预习导学自学指导自学教材第61页.完成下列问题.1.回顾思考(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O 点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.3.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.因此,从以上的画图中,我们可以得到旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以我们可以经过旋转设计出美丽的图案.活动1 小组讨论例1 如图所示,图①沿逆时针方向旋转90°可得到图⑤.图①按顺时针方向至少旋转180度可得图③.例2 如图所示,在△ABC 中,∠BAC=90°,AB=AC ,点P 是△ABC 内的一点,且AP=3,将△ABP 绕点A 旋转后与△ACP ′重合,求PP ′的长.点拨:依题意,AP 绕点A 旋转90°时得AP ′=AP=3,则△APP ′是等腰直角三角形. 所以PP ′=223332+=. 解题的关键是确定AP 与AP ′垂直且相等.课堂小练一、选择题1.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是( )A. B.C. D.2.如图,在正方形网格中,将△ABC顺时针旋转后得到△A'B′C′,则下列4个点中能作为旋转中心的是( )A.点PB.点QC.点RD.点S3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′ACD.B′C平分∠BB′A′4.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)6.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是( )A.60°B.90°C.120°D.150°7.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.10°B.20°C.50°D.70°8.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120° B.90° C.60° D.30°二、填空题9.一个正n边形绕它的中心至少旋转18°才能与原来的图形完全重合,则n的值为.10.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.11.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°得△A′B′O,则点A的对应点A′的坐标为_ _.12.时钟6点到9点,时针转动了__度.13.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD= 度.14.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为 .三、解答题15.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.参考答案16.答案为:D17.答案为:A;18.答案为:C.19.答案为:C.20.答案为:B.21.答案为:D.22.答案为:B.23.A24.答案为:20.25.答案为:15°.26.答案为:(2,3)27.答案为:90º28.答案为:30.29.答案为:17°.30.解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.。
人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质

随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.
人教版初中九年级上册数学精品授课课件 第23章 旋转 图形的旋转 第1课时 旋转的概念与性质

③你还能发现哪些有 类似关系的线段和角?
OB=OB′, ∠ABC=∠A′B′C′ 等.
④ △A′B′C′ 和△ABC 的形状和大小有什么 关系?
△ABC≌△A′B′C′
OA=OA′,∠AOA′=∠BOB′=∠COC′
举例:三角形绕外一点O旋转.
归纳
旋转的性质
对应点到旋转中心的距离相等. 对应点与旋转中心所连线段的夹角等 于旋转角. 旋转前、后的图形全等.
平面内某一点O转动一个角度,叫
做图形的旋转. 点O叫做旋转中心.
OP
转动的角叫做旋转角.
P'
转动的方向为顺时针方向.
举例:三角形绕外一点O旋转.
如果图形上的点 P 经过旋转变 为点 P' ,那么这两个点叫做这个旋 转的对应点.
类似地,你能说一说什么是对 应线段和对应角吗?
OP P'
如图,△OPQ 围绕点 O 顺时针
3. 在如图所示的正方形网格中,△MNP 绕某
点旋转一定的角度,得到△M1N1P1,则其旋转中 心是点_____.
B
旋转中心的确定:根据对应 点到旋转中心的距离相等, 可知旋转中心位于对应点连 线的垂直平分线上,即旋转 中心是两对对应点所连线段 的垂直平分线的交点.
4. 如图,△ABD,△AEC 都是等边三角 形. BE 与 DC 有什么关系?你能用旋转的性质 说明上述关系成立的理由吗?
课堂小结
定义
三要素:旋转中心,旋转 方向和旋转角
旋转 性质
对应点到旋转中心的距离相等
对应点与旋转中心所连 线段的夹角等于旋转角
旋转前、后的图形全等
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
人教版九年级上册数学同步教学课件-第23章-23.1 第1课时 旋转的概念与性质

随堂即练
1. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知 ∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角= 44 ° .
数学课堂教学课件设计
随堂即练
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得
个△ABC,再挖一个小洞O作为旋转
B
中心,硬纸板下面放一张白纸.先在
C
D
纸上描出这个挖掉的三角形图案
O
(△ABC),然后围绕旋转中心转
F
动硬纸板,再描出这个挖掉的三角
形(△DEF),移开硬纸板.
E
数学课堂教学课件设计
新课讲解
问题1 在图形的旋转过程中,线段OA A
与线段OD的关系怎样?∠AOD与
∠BOE呢?△ABC与△DEF呢?
数学课堂教学课件设计
新课讲解
★旋转的定义
P
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
这个定点O称为旋转中心.
O
旋转中心
旋转角 120
P′
转动的角称为旋转角.
如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转 的对应点.
转动的方向分为顺时针与逆时针.
数学课堂教学课件设计
Rt △ADE,点B的对应点D恰好落在BC边上.若AC= 3,
∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C. 2 D. 1
E
C
数学课堂教学课件设计
A
B D
随堂即练
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D′=16 ; (2) ∠BAB ′=45°, ∠B′AD= 45°.
人教版九年级上册数学 第二十三章 旋转 图形的旋转 (第一课时)

素养目标
2.能够根据旋转的基本性质解决实际 问题.
1.掌握旋转的有关概念及基本性质.
探究新知 知识点 1 旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样 来定义这种图 形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时 针转动了__1_2_0_°_度.
两个点叫做这个旋转的 对应点.
线段OP与OP’叫 做对应线段.
B
P 旋转角 P’
O 旋转中心
探究新知
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_45度到点B.
旋转的三要素: 旋转中心、旋转方向、旋转角度.
探究新知
素养考点 1 旋转的相关概念识别
例1 如图,△ABC为等边三角形,点P在△ABC中,将 △ABP旋转后能与△CBQ重合. (1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形?
课堂检测
能力提升题
1. 如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和 ∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能 够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过
逆时针旋转得到图(2).两次旋转的角度分别为( )A
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋
千运动.
A.2
B.3
C.4
D.5
课堂检测
B 2. 下列说法正确的是( ) A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到