2.1旋转的有关概念及性质(2011年)

合集下载

初三数学旋转知识点归纳

初三数学旋转知识点归纳

初三数学旋转知识点归纳
初三数学旋转知识点归纳
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的.夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
(2)关于中心对称的两个图形是全等图形.
5、中心对称图形:
把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、坐标系中的中心对称
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P(-x,-y)。

小学数学知识归纳旋转的概念

小学数学知识归纳旋转的概念

小学数学知识归纳旋转的概念旋转的概念是小学数学中重要的基本概念之一。

通过旋转,我们可以改变物体的位置、形状和方向,进而探索几何图形的性质以及解决具体问题。

在本文中,我们将对小学数学中的旋转进行归纳总结,帮助学生掌握旋转的概念与应用。

一、旋转的定义与基本术语旋转是指将一个几何图形绕着一个固定点旋转一定角度,从而改变图形的位置和方向。

在旋转过程中,我们需要了解一些基本术语:1. 旋转中心:旋转的固定点,通常用大写字母O表示。

2. 旋转角度:图形旋转的角度,用小写字母θ表示。

3. 旋转方向:顺时针或逆时针方向。

二、旋转的基本性质1. 旋转的对称性:旋转后的图形与原图形具有相同的大小和形状,可以看作是图形关于旋转中心的对称图形。

2. 旋转角度的确定性:旋转角度是确定的,通过旋转一个角度可以得到相应的旋转图形。

三、旋转的常见图形1. 旋转点:约定以点为旋转中心,将图形绕该点旋转一定角度。

2. 旋转线:约定以线段为旋转中心,将图形绕该线段旋转一定角度。

3. 旋转中心落在图形上的旋转:当旋转中心落在图形上时,通过旋转可以得到相似的图形。

4. 特殊旋转:正方形、正三角形等具有特殊性质的图形在旋转过程中也有其独特的表现形式。

四、旋转的应用1. 图形对称性的判断:通过旋转可以判断图形是否具有对称性,以及对称轴的位置。

2. 图形位置的确定:通过旋转可以确定图形的相对位置,为解决几何问题提供便利。

3. 图形的拼凑与复制:通过旋转可以将几何图形进行拼凑和复制,进一步提高几何创造能力。

五、旋转的练习与思考通过以下例题,我们可以加深对旋转概念的理解和应用:例题1:如图,将绿色的四边形绕旋转中心O逆时针旋转90°,得到的新图形为_______。

(此处可以添加一幅图形,通过旋转90°得到新图形)例题2:如图,将正方形ABCD绕旋转中心O顺时针旋转180°,得到的新图形为_______。

(此处可以添加一幅图形,通过旋转180°得到新图形)思考题:如果将一个圆绕其圆心旋转一周,得到的新图形是什么?为什么?六、小结本文对小学数学中的旋转概念进行了归纳总结,包括旋转的定义与基本术语、旋转的基本性质、旋转的常见图形、旋转的应用以及旋转的练习与思考。

旋转的概念与性质

旋转的概念与性质

旋转的三要素
• 在平面内,将一个图形绕着一个定点沿着某个方
向转动一个角度,称为图形的旋转。这个定点称为旋 转中心,转动的角称为旋转角。
旋转三要素
旋转中心 旋转方向(顺时针或逆时针) 旋转角
如右图,点P是正方形ABCD内一点, 将△ABP绕B点顺时针方向旋转到△CBP′ 的位置时,其旋转中心是点 B ,旋转
探究旋转的性质.
推进新课
知识点1 旋转的概念
(1)上面情境中的转动现象,有什么共同特征? 它们都是绕着一个点转动的
(2)在转动过程中,它们的形状、大小、位置是否发生改变?
在转动过程中,它们的形状、大小没有变化,只是它们 的位置有所改变。
旋转的概念
• 在平面内,将一个图形绕着一个定 点沿着某个方向转动一个角度,称为图 形的旋转。这个定点称为旋转中心,转 动的角称为旋转角。
A逆时针旋转90º B顺时针旋转90º
C逆时针旋转45º D顺时针旋转45º
B
C
D
A
E
• 如图所示,P是正三角形ABC内的一点,若将△PBC绕 点B旋转到△P´BA,则∠PBP´的度数是( 60)°
A

P
C B
课堂小结
旋转前后两个图形的形状、大小不变,因此我们在 用旋转解决与其相关的问题时要注意:
你能归纳出旋转的性质吗?
旋转性质
1.对应点到旋转中心的距离相等
2.对应点与旋转中心所连线段的夹角等 于旋转角
3.旋转前、后的图形全等
随堂演练
1. 下列现象中属于旋转的有( C) ①火车行驶; ②圆规画圆; ③方向盘的转动; ④钟摆的运动. A.1个 B.2个 C.3个 D.4个
如图,在正方形网格中,将三角形 ABC绕点A旋转后得到三角形ADE,则 下列旋转方式中,符合题意的是 ( A)

旋转知识点总结

旋转知识点总结

知识点一旋转的概念1。

旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

2。

旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3。

作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。

确定旋转中心的关键是看图形在旋转过程中某一点是“动"还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角作图的步骤:1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点。

知识点二、中心对称与中心对称图形1。

中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2。

中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3。

中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4。

中心对称和中心对称图形的区别与联系中心对称中心对称图形区别①指两个全等图形之间的相互位置关系①指一个图形本身成中心对称②对称中心不定②对称中心是图形自身或内部的点联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.5。

《旋转的概念及性质》课件

《旋转的概念及性质》课件

课堂小结
1.旋转的概念及旋转中心、旋转角的概念. 2.旋转的对应点及其应用. 3.旋转的基本性质.
作堂 业 布 置 课本61页第1题,第2题.
扇叶
扳手拧螺丝
摩天轮
钟表指针
讲授新 知
旋转中心(固定的点)
旋转的三个要素
旋转方向(顺时针方向或逆时针方向) 旋转角度
讲 授 新知 旋转的定义
1.把一个平面图形绕着平面内某一点o转动 一个角度,叫做图形的旋转,点o叫旋转中心,
转动的角叫做旋转角。 2.如果图形上的点P经过旋转变为点P′,那
么这两个点叫做这个旋转的对应点。
第二十三章 旋转 23.1 图形的旋转 第1课时 旋转的概念及性质
ቤተ መጻሕፍቲ ባይዱ 学 习习 目 标
知识目标:
(1)了解生活中旋转现象的广泛存在;
(2)掌握旋转的有关概念,理解旋转变换也是 图形的一种基本变换;
(3)会找出旋转前后的图形中的对应点、对应 线段、对应角、旋转中心、旋转角;
导 入新课
问题:观察下列动画,说一说,生活中的这些现象 叫什么?有什么共同特点?
达 标 训练
如图: △ABC是等边三角形,D是BC边上一点,
△ABD经过旋转后到达△AcE的位置。
(1)旋转中心是点 A ; (2)旋转角是 ∠BAC ;旋 转角度是 60 度 (3)∠ABD对应角为 ∠ACE ;BD对应边为 CE 。
A
E
BD
C
理 性性 提 升
将 △ABC 绕点O 顺时针旋转到 ABC
的位置
A
在图形旋转的过程中 哪些
发生了改变?哪些没有发
生改变?
B'
B
C
O
C' O

初中旋转知识点归纳总结

初中旋转知识点归纳总结

初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。

在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。

2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。

3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。

4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。

二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。

2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。

3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。

4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。

三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。

b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。

c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。

2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。

2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。

3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。

五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。

旋转定义与性质课件

旋转定义与性质课件
x'=xcosθ-ysinθ, y'=xsinθ+ycosθ, z'=z。
线绕轴旋转
设直线L过原点,方向向量为 (m,n,0),则L绕z轴旋转θ角度后 ,新的方向向量为(m',n',0),其
中m'=mcosθ-nsinθ, n'=msinθ+ncosθ。
面绕轴旋转
设平面S法向量为(a,b,c),则S绕 z轴旋转θ角度后,新的法向量为 (a',b',c'),其中a'=acosθ-bsinθ,
旋转定义与性质课件
目录
CONTENTS
• 旋转基本概念 • 旋转图形绘制技巧 • 旋转对称性质探讨 • 相似变换与旋转变换关系揭示 • 三维空间中旋转变换拓展应用 • 课程总结与思考题布置
01
旋转基本概念
旋转定义及性质
旋转定义
把一个平面图形绕着平面内某一点转 动一个角度,叫做图形的旋转。
旋转性质
学生自我评价报告收集
学生自我评价
请学生对本节课所学内容进行自我评价,包 括知识点掌握情况、课堂参与度、问题解决 能力等方面。
报告收集与整理
收集学生的自我评价报告,进行整理和分析 ,以便更好地了解学生的学习情况和问题所
在。
下节课预告及预备工作提示
要点一
下节课预告
要点二
预备工作提示
介绍下一节课将要学习的内容、重点和难点,以便学生提 前预习和准备。
VS
调整绘制过程
如发现错误或不满意的结果,可调整旋转 中心、角度或使用其他工具进行重新绘制 。
03
旋转对称性质探讨
旋转对称图形特点分析
图形特点
旋转对称图形在平面内,绕着一个定点旋转一定角度后,仍能与原图形重合。

旋转的知识点总结

旋转的知识点总结

旋转的知识点总结一、旋转的基本概念1. 旋转的定义旋转是物体绕着某一点或某一条轴心进行的运动。

在旋转运动中,物体的各个部分绕着轴心或转动中心做圆周运动,同时保持相对位置不变。

2. 旋转的基本术语(1)轴心:旋转的固定点或固定轴。

(2)转动中心:物体绕轴心旋转时,轴心在物体外部的点称为转动中心。

(3)转动轴:绕着轴心旋转的直线称为转动轴。

(4)转动惯量:物体绕轴心旋转时所具有的惯性度量。

(5)角速度:描述物体旋转的速度大小和方向的物理量。

(6)角加速度:描述物体旋转的加速度大小和方向的物理量。

二、旋转的数学描述1. 转动角度旋转的大小通常用角度或弧度来描述。

角度是一种常用的角度单位,表示一个圆心角所占的平面角度为360度。

弧度是一种物理角度单位,表示一个圆心角所对应的圆弧长度等于半径的长度。

2. 旋转的向量描述在物理学中,旋转通常被描述为一个向量。

这个向量被称为“角速度向量”,它表示物体垂直于转动平面的旋转方向和速度大小。

3. 旋转的运动方程旋转的运动方程描述了物体在旋转运动中的运动规律。

通常包括角速度、转动半径、转动角度、角加速度等物理量之间的关系。

三、旋转的力学原理1. 物体的转动惯量转动惯量是描述物体绕轴心旋转时所具有的惯性度量。

转动惯量取决于物体的形状和质量分布。

通常用符号I表示,单位是千克·米平方。

2. 物体的角动量物体的角动量是描述物体旋转运动状态的物理量。

它与物体的转动惯量和角速度有关。

通常用符号L表示,单位是千克·米平方/秒。

3. 牛顿第二定律在旋转运动中的应用牛顿第二定律(F=ma)在旋转运动中的形式为τ=Iα,其中τ表示力矩,I表示物体的转动惯量,α表示角加速度。

这个公式描述了物体在受力作用下的转动运动规律。

四、旋转的应用1. 刚体旋转刚体旋转是刚体围绕轴心或转动中心进行的旋转运动。

刚体旋转的应用广泛,包括汽车的转向、水泵的旋转、风车的旋转等。

2. 陀螺运动陀螺是一种常见的旋转运动装置,可以应用于导航、稳定、测量等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2011 广东省佛山市) 一个图形无论经过平移还是旋转,有以下说法:
①对应线段平行 ②对应线段相等
③对应角相等 ④图形的形状和大小都没有发生变化
其中都正确的说法是( )
A .①、②、③
B .①、②、④
C .①、③、④
D .②、③、④
答案:D
20110819102702906615 2.1 旋转的有关概念及性质 选择题 数学思考 2011-08-19
2. (2011 江西省) 如图,DEF △是由ABC △绕着某点旋转得到的,则这点的坐标是___________.
答案:(0,1)
20110816155552203076 2.1 旋转的有关概念及性质 填空题 双基简单应用 2011-08-16
3. (2011 江苏省南京市) 如图,E F 、分别是正方形ABCD 的边BC CD 、上的点,BE CF =,连接AE BF 、.将ABE △绕正方形的中心按逆时针方向旋转到BCF △,旋转角为α()0180α<<°°,则α∠=________°.
答案:90
20110815142158218749 2.1 旋转的有关概念及性质填空题基础知识2011-08-15。

相关文档
最新文档