图形的旋转及其性质
小学数学知识归纳旋转的概念

小学数学知识归纳旋转的概念旋转的概念是小学数学中重要的基本概念之一。
通过旋转,我们可以改变物体的位置、形状和方向,进而探索几何图形的性质以及解决具体问题。
在本文中,我们将对小学数学中的旋转进行归纳总结,帮助学生掌握旋转的概念与应用。
一、旋转的定义与基本术语旋转是指将一个几何图形绕着一个固定点旋转一定角度,从而改变图形的位置和方向。
在旋转过程中,我们需要了解一些基本术语:1. 旋转中心:旋转的固定点,通常用大写字母O表示。
2. 旋转角度:图形旋转的角度,用小写字母θ表示。
3. 旋转方向:顺时针或逆时针方向。
二、旋转的基本性质1. 旋转的对称性:旋转后的图形与原图形具有相同的大小和形状,可以看作是图形关于旋转中心的对称图形。
2. 旋转角度的确定性:旋转角度是确定的,通过旋转一个角度可以得到相应的旋转图形。
三、旋转的常见图形1. 旋转点:约定以点为旋转中心,将图形绕该点旋转一定角度。
2. 旋转线:约定以线段为旋转中心,将图形绕该线段旋转一定角度。
3. 旋转中心落在图形上的旋转:当旋转中心落在图形上时,通过旋转可以得到相似的图形。
4. 特殊旋转:正方形、正三角形等具有特殊性质的图形在旋转过程中也有其独特的表现形式。
四、旋转的应用1. 图形对称性的判断:通过旋转可以判断图形是否具有对称性,以及对称轴的位置。
2. 图形位置的确定:通过旋转可以确定图形的相对位置,为解决几何问题提供便利。
3. 图形的拼凑与复制:通过旋转可以将几何图形进行拼凑和复制,进一步提高几何创造能力。
五、旋转的练习与思考通过以下例题,我们可以加深对旋转概念的理解和应用:例题1:如图,将绿色的四边形绕旋转中心O逆时针旋转90°,得到的新图形为_______。
(此处可以添加一幅图形,通过旋转90°得到新图形)例题2:如图,将正方形ABCD绕旋转中心O顺时针旋转180°,得到的新图形为_______。
(此处可以添加一幅图形,通过旋转180°得到新图形)思考题:如果将一个圆绕其圆心旋转一周,得到的新图形是什么?为什么?六、小结本文对小学数学中的旋转概念进行了归纳总结,包括旋转的定义与基本术语、旋转的基本性质、旋转的常见图形、旋转的应用以及旋转的练习与思考。
《图形的旋转》-知识点整理

图形的旋转
1、旋转:将一个图形绕着某点O 转动一个角度的变换叫做旋转。
其中,O 叫做旋转中心,
转动的角度叫做旋转角。
2、旋转性质
① 旋转后的图形与原图形全等 ② 对应线段与O 形成的角
叫做旋转角 ③ 各旋转角都相等
3、中心对称与中心对称图形
① 中心对称:若一个图形绕着某个点O 旋转180°,能够与另一个图形完全重合,则这
两个图形关于这个点对称或中心对称。
其中,点O 叫做对称中心、两个图形的对应点叫做关
于中心的对称点。
② 中心对称图形:若一个图形绕着某个点O 旋转180°,能够与原来的图形完全重合,
则这个图形叫做中心对称图形。
其中,这个点叫做该图形的对称中心。
4、钟表旋转问题
钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一
周,则每小时旋转,3012
36000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.660
36000
=。
旋转的概念与性质

旋转的三要素
• 在平面内,将一个图形绕着一个定点沿着某个方
向转动一个角度,称为图形的旋转。这个定点称为旋 转中心,转动的角称为旋转角。
旋转三要素
旋转中心 旋转方向(顺时针或逆时针) 旋转角
如右图,点P是正方形ABCD内一点, 将△ABP绕B点顺时针方向旋转到△CBP′ 的位置时,其旋转中心是点 B ,旋转
探究旋转的性质.
推进新课
知识点1 旋转的概念
(1)上面情境中的转动现象,有什么共同特征? 它们都是绕着一个点转动的
(2)在转动过程中,它们的形状、大小、位置是否发生改变?
在转动过程中,它们的形状、大小没有变化,只是它们 的位置有所改变。
旋转的概念
• 在平面内,将一个图形绕着一个定 点沿着某个方向转动一个角度,称为图 形的旋转。这个定点称为旋转中心,转 动的角称为旋转角。
A逆时针旋转90º B顺时针旋转90º
C逆时针旋转45º D顺时针旋转45º
B
C
D
A
E
• 如图所示,P是正三角形ABC内的一点,若将△PBC绕 点B旋转到△P´BA,则∠PBP´的度数是( 60)°
A
P´
P
C B
课堂小结
旋转前后两个图形的形状、大小不变,因此我们在 用旋转解决与其相关的问题时要注意:
你能归纳出旋转的性质吗?
旋转性质
1.对应点到旋转中心的距离相等
2.对应点与旋转中心所连线段的夹角等 于旋转角
3.旋转前、后的图形全等
随堂演练
1. 下列现象中属于旋转的有( C) ①火车行驶; ②圆规画圆; ③方向盘的转动; ④钟摆的运动. A.1个 B.2个 C.3个 D.4个
如图,在正方形网格中,将三角形 ABC绕点A旋转后得到三角形ADE,则 下列旋转方式中,符合题意的是 ( A)
图形的旋转概念与性质

在物理模拟中,描述物体旋转的参数包括角速度和角加速度。角速度表 示物体每秒钟转过的角度,角加速度则表示物体转动速度的变化率。
03
转动惯量
物理模拟中另一个重要的概念是转动惯量,它描述了物体转动时抵抗改
变其转动状态的能力。转动惯量的大小取决于物体的质量分布和转动轴
的位置。
04 旋转的数学原理
欧拉角
欧拉角是描述物体在三维空间中绕着 三个轴(通常为X、Y、Z轴)旋转的 角度。
欧拉角在表示旋转时存在万向节锁问 题,即当物体绕两个轴旋转时,第三 个轴的旋转角度可能会发生跳变。
欧拉角有三种类型:滚动角(绕X轴 旋转)、俯仰角(绕Y轴旋转)和偏 航角(绕Z轴旋转)。
轴角表示法
轴角表示法是通过指定旋转轴 和旋转角度来描述物体的旋转。
守恒定律
在没有外力矩作用的情况下,刚 体的角动量保持不变。
应用
解释了旋转运动的物体在没有外 力矩作用时,会保持其旋转状态。
旋转的能量守恒定律
旋转动能
刚体绕旋转轴转动的动能,与转动惯量和角速度平方成正比。
守恒定律
在没有外力做功的情况下,刚体的旋转动能保持不变。
应用
解释了旋转运动的物体在没有外力做功时,其旋转速度不会发生变 化。
在Unity中,可以使用Rotate 方法并传入负值来实现逆旋 转,即旋转相反的方向。
THANKS FOR WATCHING
感谢您的观看
相反的方向。
DirectX中的旋转
欧拉角与四元数
DirectX支持使用欧拉角或四元数来表示旋转。欧拉角是绕三个轴的旋转角度,而四元数 则是一种更稳定的表示方式,可以避免万向锁问题。
变换矩阵
通过指定变换中心和旋转角度,DirectX可以计算出对应的变换矩阵,用于更新顶点坐标 。
23-1 图形的旋转 课件(共20张PPT)

按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在
同一条直线上,那么旋转角等于(C )。
A.55° B.70°
C.125° D.145°
解析:知道∠B=35°,∠C=90°,所以∠BAB1=55°。 也就是旋转角是180°-55°=125°。
教学新知
知识点2:旋转的性质特征。 (1)对应点对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图象全等。
BC=5,BD=4。则下列结论错误的是( B )。
A.AE//BC
B.∠ADE=∠BDC
C.△BDE是等边三角形 D.△ADE的周长是9
小练习
解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°, ∵将△BCD绕点B逆时针旋转60°,得到△BAE, ∴AEB=∠C=60°,∴AE//BC,故选项A正确; ∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE由△BCD逆时针旋转60°得 出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°, BE=BD,∴△BDE是等边三角形,故选择C正确;∴DE=BD=4,∴△AED的周长 =AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴ 结论错误的是B。
小练习
如图所示,已知△ABC是直角三角形,∠ACB=90°, AB=5cm,BC=3cm,△ABC绕点C逆时针方向旋转90°
后得到△DEC,则∠D=∠__A__,∠B=_∠_D__EC___, DE=__5__cm,EC=__3__cm,AE=_1__cm,DE与AB的 位置关系为_垂__直__。
旋转的性质有哪些

旋转的性质有哪些
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
本文整理了旋转相关性质,欢迎阅读。
旋转性质
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,
①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
④旋转中心是唯一不动的点。
⑤一组对应点的连线所在的直线所交的角等于旋转角度。
旋转三要素
①定点—旋转中心;
②旋转方向;
③旋转角。
注意:三要素中只要任意改变一个,图形就会不一样。
旋转角定义
旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线这两条线的夹角。
旋转角性质
经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
旋转知识点总结

旋转知识点总结旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转。
定点O称为旋转中心,转动的角称为旋转角。
如果图形上的点P经过旋转到点P',那么这两个点叫做这个旋转的对应点。
如图1,线段AB绕点O顺时针转动90度得到AB',这就是旋转,点O就是旋转中心,∠BOB'和∠AOA'都是旋转角。
说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。
决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向。
知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。
由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同。
⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。
⑶对应点到旋转中心的距离相等。
⑷对应线段相等,对应角相等。
例1:如图2,D是等腰Rt△ABC内一点,BC是斜边,如果将△ADB绕点A逆时针方向旋转到△ADC的位置,则∠ADD'的度数是()。
分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决。
由△ADC是由△ADB旋转所得,可知△ADB≌△ADC,∴AD=AD',∠DAB=∠D'AC,∵∠DAB+∠___,∴∠D'AC+∠___,∴∠ADD'=45,故选D。
评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键。
知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角。
2.理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等。
旋转知识点总结

旋转知识点总结一、旋转1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角叫做旋转角.2.旋转三要素:①旋转中心;②旋转方向;③旋转角度3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的图形全等.4.网格中的旋转:①确定旋转中心、旋转方向及旋转角;②找原图形的关键点;③连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;④按原图形依次连接各关键点的对应点,得到旋转后的图形.二、中心对称1.中心对称:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.三、尺规作图(旋转)1.作图方法:以旋转点为中心找出各点旋转对应角度后得到的对应点,再顺次连接得到旋转后的图形.四、关于原点对称的点的坐标1.关于原点对称后点的坐标:若对称前的点坐标为(x,y),那么对称后的点坐标为(-x,-y).五、旋转90°的点的坐标1.绕原点旋转90°后的点的坐标:(1)顺时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(y,-x).(2)逆时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(-y,x).六、常见全等模型(手拉手模型)1.手拉手模型:两个等腰三角形共顶点时,就有全等三角形.结论:(1)△ABE≌△DBC(2)AE=DC(3)AE交DC于点H,∠AHD=∠ABD(4)HB平分∠AHC七、常见全等模型(半角模型)1.半角模型:共顶点的两个角度,当一个角等于另一个角的一半时,可以将三角形旋转,得到全等三角形.结论:(1)△AEF≌△AGF(2)EF=BF+DEDA CB八、常见全等模型(对角互补四边形旋转模型)1.对角互补四边形旋转模型:四边形对角互补且有一组邻边相等时,可以将三角形旋转,得到等腰三角形或正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.3 平面图形的旋转(1)
学习目标
1. 了解平面图形旋转基本性质;
2. 能通过具体实例认识平移,理解旋转的基本内涵,理解平面图形的旋转性质
学习重点:旋转的基本内涵与基本性质。
学习难点:平面图形的旋转性质的应学习过程
一、课前准备
P13,找出疑惑之处,并记录下来
二、回顾:
1、平移的概念:在平面内,将一个图形
(),这样的图形运动称为平移。
平移不改变图形的()和()。
只改变图形的()
2、、平移的性质:经过平移,对应点所连的线段()且(),对应线段()且(),()相等。
二、新课导学
※学习探究
探究任务(一):1、平面图形旋转的定义:
在平面内,将一个图形
这样的图形运动称为旋转。
注:(1)这个定点称为
(2)转动的角称为
(3)旋转不改变图形的
只是发生变化。
2、举一些生活中旋转的实例
(二)、探索旋转的基本性质:
1、想一想:
如果把钟表的指针看作四边形AOBC,它绕点O按顺时针方向旋转得到四边形DOEF,在这个旋转过程中:
①旋转中心是什么?旋转角是什
么?
②经过旋转,点A、B分别移动到
什么位置?
③AO、DO的长有什么关系?BO、
EO呢?
④∠AOD与∠BOE有什么大小关系?
2、旋转的基本性质:
(1)经过旋转,图形上的每一点都绕沿
转动了,任意一对的连线所成的角都是;
(2)对应点到旋转中心的。
(3)旋转前后的两个图形是。
(4)旋转前后的两个图形的是
※典型例题
例1.(钟表问题中的旋转)
钟表的分针旋转一周需要60分钟。
(1)指出它的旋转中心,
(2)经过20分钟,分针转了多少度?时针呢?
3、旋转图形与基本图形
1、现实生活中许许多多的图形是由一些基本图形经过旋转后得到的。
如:
这三个图形分别是由
基本图形经过
旋转后得到的。
2、作课本P12页的做一做
※学习小结
写出本节课你有哪些收获?
学习评价
※当堂检测(时量:5分钟满分:100
分)计分:
1、下列说法正确的是()
A. 平移不改变图形的形状和大
小,而旋转则改变图形的形状和大小
B. 平移和旋转的共同点是改变图
形的位置
C. 图形可以向某方向平移一定距
离,也可以向某方向旋转一定距离
D. 在平移和旋转图形中,对应角
相等,对应线段相等且平行
2、下图是一个旋转对称图形,要使
它旋转后能与自身重合,至少应将它
绕中心点旋转的度数是()
A. 30°
B. 60°
C. 120°
D. 180°
3、如图8,把三角形△ABC绕着点
C顺时针旋转35°,得到△A'B'C,
A'B'交AC于点D,若∠A’DC=90°,
则∠A的度数是__________。
4、如图5,在正方形ABCD中,E
为DC边上的点,连结BE,将△BCE
绕点C顺时针方向旋转90°得到△
DCF,连结EF,若∠BEC=60°,则
∠EFD的度数为()
A. 10°
B. 15°
C.
20° D. 25°
§8.3 平面图形的旋转(1)
1、平面图形旋转的定义:
在平面内,将一个图形
这样的图形运动称为旋转。
注:(1)这个定点称为
(2)转动的角称为
(3)旋转不改变图形的
只是发生变化。
2、旋转的基本性质:
(1)经过旋转,图形上的每一点都绕
沿
转动了,
任意一对的连线所成
的角都是;
(2)对应点到旋转中心
的。
(3)旋转前后的两个图形
是。
(4)旋转前后的两个图形的
是
1、等边三角形至少旋转__________
度才能与自身重合。
2、如图6,△ABC以点A为旋转中
心,按逆时针方向旋转60°,得△AB'
C',则△ABB'是__________三角形。
3、如图3,图形旋转一定角度后能与
自身重合,则旋转的角度可能是
() A. 30° B. 60°
C. 90°
D. 120
4、将一图形绕着点O顺时针方向旋转
70°后,再绕着点O逆时针方向旋转
120°,这时如果要使图形回到原来的
位置,需要将图形绕着点O沿什么方
向旋转多少度?
A. 顺时针方向50°
B. 逆时针方向50°
C. 顺时针方向190°
D. 逆时针方向190
5、四边形ABCD是正方形,△ADF
旋转一定角度后得到△ABE,如图所
示,如果AF=4,AB=7,求(1)指
出旋转中心和旋转角度(2)DE的长
度
6、在△ABC中,∠B=10°,∠ACB
=20°,AB=4cm,△ABC逆时针旋
转一定角度后与△ADE重合,且点C
恰好成为AD中点,如下图,⑴指出
旋转中心,并求出旋转的度数。
⑵求
出∠BAE的度数和AE的长。
C
A
E。