光电探测技术原理—第四章
光电探测理论与技术 四

OPTICAL DETECTION THEORY AND TECHNOLOGY 20131光电仪器中的激光器光电探测理论与技术第四讲提纲•激光器在光电仪器中的应用•激光的基本概念•半导体激光器的特点及技术进展•光纤激光器简介OPTICAL DETECTION THEORY AND TECHNOLOGY 20133激光器在光电仪器中应用Worldwide commercial laser revenues 激光器各类应用科研与军事仪器与传感器OPTICAL DETECTION THEORY AND TECHNOLOGY 20134通信与光存储市场•数据通信和光存储的半导体激光•光纤通讯领域是半导体激光器应用的最大市场,常用LD 是1.3μm 和1.55μm 的InGaAsP/InP 半导体激光器DFB ( Distributed Feedback)OPTICAL DETECTION THEORY AND TECHNOLOGY 20135EDFA 光纤放大器•EDFA 光纤放大器•0.98μm 和1.48μm LD 是掺铒光纤放大器的泵浦源,掺铒光纤放大器可用作光发射机的功率放大、线路放大、无再生中继、接收机的前置放大等。
Wavelength 1530 ~ 1565 nm Small Signal Gain 35(dB)DBR DBROPTICAL DETECTION THEORY AND TECHNOLOGY 20136EDFA模块技术参数OPTICAL DETECTION THEORY AND TECHNOLOGY 20137光存储系统用激光器OPTICAL DETECTION THEORY AND TECHNOLOGY 20138不同光存储系统比较OPTICAL DETECTION THEORY AND TECHNOLOGY 20139多层刻录技术多层刻录对半导体激光器提出更高要求。
TDK 已经宣布研发出4层、容量为100GB 的蓝光碟。
光电探测技术在医学成像中的应用

光电探测技术在医学成像中的应用近年来,随着科技的不断进步,光电探测技术在医学成像中的应用也变得更加广泛。
光电探测技术以其高灵敏度、高分辨率和无辐射等优点,成为医学成像领域研究的热点之一。
本文将从光电探测技术的原理、现状以及在医学成像中的应用等方面进行介绍。
一、光电探测技术的原理光电探测技术是一种利用光电效应将光信号转化为电信号的技术。
其原理是根据光电效应的物理性质,利用半导体材料将光转化为电子,再通过电子在半导体中的漫游和扩散来形成信号。
简单来说,光电探测技术是利用光子对半导体的影响产生电荷的原理。
当光子进入半导体后,光子与半导体原子产生相互作用,将能量传递给电子,使电子跃迁到导带中。
因此,光子经过半导体材料时会释放出电子对,导带中的电子将被扫描并转化为电流。
这样就可以将光信号转化为电信号,实现成像和检测。
二、光电探测技术在医学成像中的应用1. 光子计数成像光子计数成像是一种通过检测成像区域内的光子计数来生成图像的成像技术。
该技术使用一些特殊的仪器从生物组织中收集光子,用于生成生物组织的代谢图,在癌症诊断和治疗方面有着广泛的应用。
2. 光声成像光声成像是一种以产生光学束声波来成像的技术。
光声成像结合了光学和声学两种成像技术,具有分辨率高、信噪比高、无辐射等优点,已广泛应用于生物医学成像、分子成像、肿瘤检测等领域。
3. 光学纤维传感光学纤维传感是将光信号通过在光学纤维中的传播进行检测的技术。
其优点是单根光纤可以实现对复杂生物系统的多个参数的无损测量,并且采用的是无辐射技术,不会对生物组织造成伤害。
在生物医学中,光纤传感器已广泛应用于血液脉搏检测、心血管疾病监测、药物释放监测等方面。
三、光电探测技术的未来及展望未来,随着光电探测技术的不断突破,其在医学成像、分子成像、肿瘤检测、药物检测等领域的应用将越来越广泛。
相信通过技术的不断升级和优化,光电探测技术将能够为生物医学领域的研究和临床诊断工作提供更加有效和全面的支持。
《光电探测技术》课程标准

《光电探测技术》课程标准课程代码:学时:36 学分:2一、课程的地位与任务《光电探测技术》课程是光电制造与应用技术专业(五年一贯制)开设的一门2学分的专业拓展课程,针对光机电一体化设备中涉及的光检测和控制技术,讲述光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路。
通过本课程的学习,使学生掌握光机电一体化设备的测量与自动化技术及其应用等知识,开拓学生思维。
二、课程的主要内容和学时分配1.课程的主要内容光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路,基本光电元器件检测、识别、焊接、装配。
第1章光的度量1.1辐射度量1.2光度的基本物理量1.3光度量基本定律1.4照度计与亮度计第2章光电检测器件工作原理及特性2.1光电检测器件的物理基础2.2光电检测器件的特性参数2.3光电导探测器及应用3.1光电导探测器的工作原理3.2光敏电阻的结构及分类3.3光敏电阻的特性3.4光敏电阻的应用习题3.5结型光电探测器及应用1.1结型半导体光伏效应1.2光电池1.3光电二极管1.4光电三极管1.5光电开关与光电耦合器1.6光电位置探测器第5章光电成像器件及应用5.1ccd图像传感器5.2CmOS图像传感器第6章光纤传感检测技术及应用6.1光纤传感器的基础6.2光纤的光波调制技术6.3光纤传感器实例第7章光电信号检测电路6.1光电检测电路的设计要求6.2光电信号输入电路的静态计算6.3光电信号检测电路的动态计算6.4前置放大器7.5滤波器7.6光电信号主放大器8.学时分配1.本课程注重学生对光电检测器件的应用能力培养;2.采取理论教学和实验相结合的方式以增强课程学习的理实性;四、课程的实践环节安排实验一光敏电阻的应用实验二光电二极管的应用实验三光电位置探测器的应用实验四光纤传感器的应用实验五光电检测电路的单元电路设计五、推荐教材和主要参考书《光电探测技术与应用》作者:黄焰、肖彬、孙冬丽,华中科技大学出版社,出版时间:2016年六、考核方式及标准平时考核成绩占60%(出勤+作业+其它),期末考试(开卷)占40%。
光电探测原理

光电探测原理光电探测技术是一种利用光电效应来实现光信号的探测和转换的技术。
光电探测技术在现代科学技术中得到了广泛的应用,包括光通信、光电子器件、光电传感等领域。
本文将介绍光电探测的基本原理及其在各个领域的应用。
光电探测的基本原理是利用光电效应将光信号转换为电信号。
光电效应是指当光线照射到某些物质表面时,光子的能量被物质吸收,电子被激发并跃迁到导带中,从而产生电荷对。
这种光电效应可以通过光电二极管、光电倍增管、光电导管等器件来实现光信号的探测和转换。
光电二极管是一种常用的光电探测器件,它利用半导体材料的光电效应来实现光信号的探测。
当光线照射到光电二极管上时,光子的能量被半导体吸收,激发出电子-空穴对,从而产生电流。
通过测量电流的大小,可以得到光信号的强度和频率。
光电二极管具有响应速度快、灵敏度高、工作稳定等优点,广泛应用于光通信、光电子器件等领域。
光电倍增管是一种利用光电效应来放大光信号的器件。
光电倍增管内部含有光阴极、光电子倍增管和阳极等部件,当光线照射到光阴极上时,光电子被释放并经过倍增管的放大作用,最终在阳极上产生电荷对。
光电倍增管具有放大倍数高、信噪比好、工作稳定等优点,被广泛应用于光电传感、光谱分析等领域。
光电导管是一种利用光电效应来实现光信号探测和放大的器件。
光电导管内部含有光阴极、光电子倍增管和输出电极等部件,当光线照射到光阴极上时,光电子被释放并经过倍增管的放大作用,最终在输出电极上产生电荷对。
光电导管具有灵敏度高、响应速度快、工作稳定等优点,被广泛应用于光通信、光电子器件等领域。
总的来说,光电探测技术是一种利用光电效应来实现光信号的探测和转换的技术,具有灵敏度高、响应速度快、工作稳定等优点,被广泛应用于光通信、光电子器件、光电传感等领域。
随着科学技术的不断发展,光电探测技术将会得到更广泛的应用,并在各个领域发挥重要作用。
4.1 光电检测

二、差动法
图4.1.1-2 双光路差动法测量物体长度
1.调整: 放入标准工件的尺寸,调整光楔,使 φ1 = φ2 ,使 μA表读数为“0”, 2.测量: 当工件尺寸无误差时,φ1=φ2,光电传感器输出U 无交变分量,见图4.1.1-3; 当工件尺寸变小时,φ1>φ2,光电传感器输出U有 交 变 分 量 , 幅 值 取 决 于 φ1 与 φ2 之 差 , U = S(φ1φ2)=SΔφ。
28
附
模拟乘法器的应用
2 i
目录 章首 节首 上一张 下一张 结束
1. 平方运算
uo Ku
2. 除法运算
ui
uo1
R1 R2 i2
uo
ui2
对理想运放 u–= u+= 0 i –= i + = 0
ui1 uo1 K ui 2uo R1 R2 R2
ui1
i1
– + +
uo
R’
R2 ui1 uo KR1 ui 2
脉冲激光测距的方框图见图4.1.2-2。
图4.1.2-2 脉冲激光测距方框图 它由脉冲激光发射系统、接收系统、控制电路、时 钟脉冲振荡器以及计数显示电路等组成。
图4.1.2-3 脉冲测距的波形图
由光电器件5得到的电脉冲,经放大器7以后,输出一定 形状的负脉冲至控制电路8。由参考信号产生的负脉冲A(图
t
图4.1.1-3 光电传感器输出 当工件尺寸变大时,φ1<φ2,光电传感器输出U有交变分 量,幅值取决于φ1与φ2 之差,U=S(φ1-φ2)=-SΔφ。
3.结论: 测量值的大小决定于u的幅值,测量值的正负决定于 u的相位,可通过相敏检波器得到。这样,只要判断 u 的 正负,就可知道被测工件的正负偏差,只要测出u的大小, 就可知道工件的偏差值。
光电检测原理与技术知到章节答案智慧树2023年内蒙古大学

光电检测原理与技术知到章节测试答案智慧树2023年最新内蒙古大学第一章测试1.以下属于光电检测仪器的有()。
参考答案:光敏电阻2.光电检测系统的组成包括()。
参考答案:光电探测器;光电检测电路;光源;光学系统3.以下属于光电检测技术的特点的有()。
参考答案:寿命长;速度快;距离远;精度高4.光电检测技术是对待测光学量或由非光学待测物理量转换成光学量,通过光电转换和电路处理的方法进行检测的技术。
()参考答案:对5.半导体激光器在激光外径扫描仪中起到提供光源的作用。
()参考答案:对第二章测试1.可见光的波长范围是()。
参考答案:380 nm~780 nm2.半导体对光的吸收种类不包括()。
参考答案:电子吸收3.荧光灯的光谱功率谱是()。
参考答案:复合光谱4.激光器的发光原理是()。
参考答案:受激辐射5.视角分辨率的单位通常为()。
参考答案:lpi6.光调制包括()。
参考答案:PM;AM;FM7.电光效应反映介质折射率与电场强度可能呈()。
参考答案:平方关系;线性关系8.大气散射包括()。
参考答案:瑞利散射;无规则散射;米氏散射9.光纤损耗包括()。
参考答案:吸收损耗;散射损耗10.参考答案:1.63 lm和5.22×105 cd第三章测试1.以下主要利用光电子发射效应的光电器件有()。
参考答案:光电倍增管;真空光电管2.可用作光敏电阻的主要材料包括有()。
参考答案:有机材料;半导体;金属;高分子材料3.以下主要利用光伏效应的光电器件有()。
参考答案:CIGS电池4.以下属于声光调制晶体的有()。
参考答案:PbMoO5.以下效应可用于普朗克常量测量的是()。
参考答案:光电效应6.光伏探测器处于光电导工作模式,其外加偏压为正向偏压。
()参考答案:错7.光敏电阻的电阻温度系数可正可负。
()参考答案:对8.光电导探测器的工作原理是多子导电。
()参考答案:对9.光电倍增管的阳极灵敏度和阴极灵敏度之比是电流增益。
光电技术 第4-2节 光电导探测器

所谓短态前历效应是指被测光敏电阻在 无光照条件下放置一段短时间(如三分钟) 后,再在1lx光照下测量它在不同时刻的阻值 (如1秒后的阻值)R1 ,求出此阻值与稳态 时阻值R0的百分比R1/R0,这就是短态前历效 应或暗态前历效应。所谓中态前历效应是将 光敏电阻在无光照条件下存放24小时,在 100lx光照度下放置15分钟,再放在100lx下 测阻值 R2 ,则中态前历效应为(又称亮态前 历效应)。 R2 R1
R1 100%
附:光敏电阻暗态前历效应:
时间s 阻值k
时间s 阻值k
1 6.5 20 5.2
R1/R2
2 6 30 5.2
77 ﹪
5 5.5 60 5.1
10 5.2 90 5.0
15 5.2 120 5.1
Cd S 亮态前历效应:
元件编号 1 2 3 4 5 6 7 8 R1( k) R2( k) 2.74 2.89 5.06 5.24 2.25 2.39 2.42 2.60 1.45 1.48 2.23 2.31 3.58 3.69 5.40 5.62
在弱光下, 1 称直线性光电导。在强光照时 =0.5,在其它光照时,0.5≤ ≤1。 一般,光电流和照度关系曲线如右。在 实际应用范围(0.1~104lux),有可能制造 出 接近于1的光敏电阻,这时应有
I p S gVE g p E
式中 g p S gV 称为光电导 在器件中流过的电流是光电流 I p与暗电流 I d 之 和。
由光电导效应可知,光敏电阻在受到光照或停 止光照时,光生载流子的产生或消失都要经过一段 时间,这就是光敏电阻的响应时间或驰豫时间。它 t 反映了光敏电阻的惰性。 p (t ) p0 exp( ) 此处 是光敏电阻的下降时间。在突然加光照时,
光电探测的基本原理

光电探测的基本原理光电探测是利用光电效应将光信号转化为电信号的一种技术。
它基本的原理是当光子入射到某种物质表面时,会引起光电子的发射,从而产生电流。
这种现象被称为外光电效应。
根据外光电效应的不同特点,我们可以将光电探测器分为光电导、光电阻、光电二极管、光电倍增管等不同类型。
光电导器是一种利用光电效应的玻璃管,一端封闭,内部充满一种特殊的光敏剂。
当有光照射到光敏剂上时,光照能量会被吸收,产生电子。
这些电子在电场的作用下会受到加速,从而形成电流。
光电导器的灵敏度很高,可以接收到很弱的光信号,并且其输出电流与入射光信号的强度成比例。
但是光电导器的响应速度较慢,适用于一些需要高信噪比的低速光探测应用。
光电阻是一种依靠光敏材料电阻变化特性来实现光电转换的器件。
光电阻的原理是光照射到光敏材料上时,能够使材料内的带电粒子的能级发生变化,从而影响材料的电导率。
光敏材料通常是一些半导体材料,如硒化锌、硒化镉等。
当光照射到光电阻上时,光子的能量足够高时,电子就会从价带上跃迁到导带,产生自由电子。
这些自由电子的增多会使光电阻的电阻值减小。
通过测量光电阻的电阻值的变化,我们可以得到入射光的强度。
光电二极管是一种利用P-N结的光电效应进行光电转换的器件。
由于P-N结的能带结构不同,当光子入射到P-N结上时,能量大于带隙能的光子会被吸收并激发电子从价带跃迁到导带,形成电子-空穴对。
由于P区的导电性较好,电子-空穴对会迅速分离,电子被P区收集,空穴被N区收集,形成一个电流。
光电二极管的输出电流与入射光的强度成正比,可以广泛应用于光探测、通信等领域。
光电倍增管是一种利用光电效应将入射光子转化为电子,然后通过电子倍增技术将电子数量进行倍增,最终得到强电信号的器件。
光电倍增管通常由光阴极、电子倍增器和阳极组成。
光阴极接收到入射光子后,会发射出电子,这些电子通过电子倍增器中的过程进行倍增,最后到达阳极产生电流。
光电倍增管具有高增益、快速响应和高信噪比的特点,适用于低光强下的探测和测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.热电子发射 光电阴极中有少数电子的热能大于光电阴极逸出功,因 而产生热电子发射。室温下典型阴极每秒每平方厘米发 射二个数量级的电子,相当于10-16~10-17Acm-2的电流 密度。这些热发射电子会引起噪声,限制着传感器的灵 敏度极限。
光电探测技术原理—第四章
光电探测技术—第四章
李静
光电探测技术原理—第四章
真空光电器件
真空光电发射器件是基于外光电效应的光电探测器,包括 光电管和光电倍增管两类。具有极高的灵敏度、快速响应等特 点,它在探测微弱光信号及快速脉冲弱光信号等方面仍然是一 个重要的探测器件。因此广泛应用于航天、材料、生物、医学、 地质等领域都有相当大的应用。
锑钾钠铯阴极是三碱阴极中最有实用价值的一种, 它从紫外到近红外的光谱区都具有较高的量子效 率。
光电探测技术原理—第四章
五、紫外光电阴极
一般来说,对可见光灵敏度的光电阴极,对紫外光也 都具有较高的量子效率。但在某些应用中,为了消除 背景噪声的影响,要求光电阴极只对所探测的紫外辐 射信号灵敏,而对可见光无响应,这样阴极通常称为 “日盲”型光电阴极。
二、银氧铯(Ag-O-Cs)光电阴极
银氧铯阴极是最早出现的实用光电阴极。 目前,除了Ⅲ-Ⅴ族的光电阴极外,它仍 然是在近红外区具有使用价值的唯一阴极。
银氧铯阴极是以Ag为基底,氧化银为中 间层,上面再有一层带有过剩Cs原子及 Ag原子的氧化铯,而表面由Cs原子组成, 可用[Ag]-Cs2OAgCs-Cs的符号表示,如图 a所示。
光电探测技术原理—第四章
图a分别表示p型Si和n型Cs2O两种材料的能带图。
本来p型Si的发射临界值是 Ed1 EA1 Eg1 ,电 子受光激发进入导电带后需克服亲和势才能逸出出
表面。现在由于表面存在n型薄层,使耗尽区的电位
下降,表面电位降低Ed。光电子在表面附近受到耗
尽区内建电场的作用,从Si的导电带底部漂移到表
光电发射阴极是光电发射器件的重要部件,它是 吸收光子能量发射光电子的部件。它的性能直接影响 着整个光电发射器件的性能,为此,首先讨论用于制 造光电阴极的典型光电发射材料。
光电探测技术原.灵敏度
(1)光照灵敏度
▪ 表示光电阴极在一定的白光照射下,阴极光电流与入射的光通量之 比。光照灵敏度也称为白光灵敏度或积分灵敏度,单位为uA/lm。
光电探测技术原理—第四章
真空光电器件结构及常见类型
结构:均包括光电阴极、阳极、真空玻璃壳 分类:
成像型 非成像型
常见器件:
光电管
真空光电管
充气光电管 光电倍增管
光电探测技术原理—第四章
4.1 光电阴极
在光电管、光电倍增管、变象管、象增加器和一 些摄像管等光电器件中,使不同波长的各种辐射信号 转换为电信号,均依靠光电阴极。因而光电阴极关系 到光电器件的各项光电性能。
面Cs2O的导带底部。此时,电子只需克服EA2就能逸 出出表面。对于p型Si的光电子需克服的有效亲和势
将近红外区具有高灵敏度的Ag-O-Cs阴极和蓝光区具 有高灵敏度的Bi-Cs-O阴极相结合,可获得在整个可 见光谱范围内具有较均匀响应和高灵敏度的 Bi-Ag-O-Cs光电阴极。该阴极的量子效率达10%,但 长波限只有750nm。
光电探测技术原理—第四章
三、单碱锑化物光电阴极
金属锑与碱金属锂、纳、钾、铷、铯中的一种 化合,都能形成具有稳定光电发射的发射体。 其中,以CsSb阴极的灵敏度最高,是最具有使 用价值的光电发射材料,广泛用于紫外和可见 光区的光电探测器中。
常用的有锑化铯和碘化铯两种。
光电探测技术原理—第四章
六、负电子亲和势光电阴极
现以Si-CsO光电阴极为例加以说明,它是在p型Si的 基质材料上涂一层极薄的金属Cs,经特殊处理而形成 n型Cs2O 。表面为n型的材料有丰富的自由电子,基 底为p型材料有丰富的空穴,它们相互扩散形成表面 电荷局部耗尽。与p-n结情况类似,耗尽区的电位下 降E,造成能带弯曲,如图b所示。
Ag-O-Cs光电阴极的光谱响应曲线如图b 所示。它的长波灵敏度延伸至红外1.2um, 并且有两个峰值,近红外800nm处有一主 峰,另一主峰处于紫外350nm。
光电探测技术原理—第四章
Ag-O-Cs光电阴极的灵敏度较低。光照灵敏度约为 30uA/lm,辐照灵敏度为3mA/W,量子效率在峰值波长 处也只有1%,它的热电子发射密度在室温下超过任何 其它实用阴极,约为10-11~10-14A/cm2。此外,当阴极 长期受光照后,会产生严重的疲劳现象,且疲劳特性 与光照度。光照波长等都有密切关系,疲劳后光谱响 应曲线也会发生变化,因此它的应用受到很大限制。
2.量子效率
Q() Ne () N p ()
量子效率和光谱灵敏度是一个物理量的两种表示方法。它们 之间的关系:
Q () Ie (( ))//q h vS ( q )h cS () 1 2 4 0
▪ 式中λ单位为nm;S(λ)为光谱灵敏度,单位为A/W。
光电探测技术原理—第四章
3.光谱响应曲线 光电阴极的光谱灵敏度或量子效率与入射辐射波长的关 系曲线,称为光谱响应曲线。真空光电组件中的长波灵
(2)色光灵敏度
▪ 就是局部光谱区域的积分灵敏度。它表示在某些特定的波长区,通 常用特性已知的滤光片插入光路,然后测得的光电流与未插入滤光 片时阴极所受光照的光通量之比。
光电探测技术原理—第四章
(3)光谱灵敏度 表示一定波长的单色辐射照到光电阴极上, 阴极光电流与入射的单色辐射通量之比,单 位为mA/W或A/W。
锑铯阴极的典型光谱响应曲线
光电探测技术原理—第四章
四、多碱锑化物光电阴极
当锑和几种碱金属形成化合物时,具有更高的响 应率,其中有双碱、三碱和四碱等,统称为多碱 锑化物光电阴极。
锑纳钾阴极是双碱阴极中的一种,它的光谱响应 与锑铯阴极相近,在峰值波长0.4um处的量子效率 达25%,其典型光照灵敏度可到50uA/lm。它的特 点是耐高温,工作温度可达到175℃,而一般含铯 阴极的工作温度不能超过60 ℃,因此锑钾钠阴极 可用于石油探测等特殊场合。