液力变矩器工作原理_图文

合集下载

自动变速器任务一液力变矩器的结构与原理课堂PPT

自动变速器任务一液力变矩器的结构与原理课堂PPT
Байду номын сангаас10
液力变矩器的工作原理就像两个风扇相对,一个 风扇工作,然后将另一个不工作的风扇吹动。这 个比喻可以很形象的解释液力变矩器中泵轮和涡 轮之间的工作关系。不过详细解释其工作原理,
则有些复杂。
11
12
动力输出之后,带动与变矩器壳体相连的泵轮,泵轮 搅动变矩器中的自动变速箱油(以下简称ATF),带 动涡轮转动,ATF在壳体中是一个循环的动作,由于泵 轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧, 冲向前方的涡轮,再流向轴心位置,回到泵轮一侧, 如此周而复始的循环,将动力传向与齿轮箱连接的涡 轮。
13
E:\2013年课件\液力变矩器(流畅) _320x240_2.00M_h.264.flv
14
8
9
曾有一种说法,AT上的液 力变矩器相当于MT上的 离合器,起到动力的连接 和中断的作用。其实这种 说法是错误的。AT与发动 机曲轴是直接连接的,不 像MT有一个动力的开关: 离合器。所以从点火的瞬 间开始,液力变矩器便开 始转动了,对于动力的连 接和中断,仍由齿轮箱内 部的离合器来完成,液力 变矩器唯一与MT离合器 相似的地方,也就是液力 变矩器“软连接”的特性, 与MT离合器的“半联动” 工况相近。
不过只有该零部件和传动方式,只能称为液力耦合器, 若想成为液力变矩器,必然要改变涡轮叶片的形状, 这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮 旋转方向相反,因而造成冲击,所以为了成为液力变 矩器还需另一个部件:导轮。导轮是存在于泵轮和涡 轮之间的一个部件,用于调节壳体中ATF液流方向,通 过单向离合器与箱体固定。
6
1、液力变矩器的结构 泵轮 :动力输入 导轮:增加扭矩 涡轮:动力输出
7

变矩器结构与工作原理--图文

变矩器结构与工作原理--图文
②“软连接”可以通过液体为介质,吸收传动系统的冲 击和振动,延长零部件的寿命和减少噪声
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、 效率低,故装有此自动变速器的车在低、高速行驶时,油耗 非常大。
1.结构 由泵轮、涡轮、导轮 组成 与变矩器的区别 和偶合器相比,变矩 器在结构上多了导轮 (stator) 导轮 通过导轮座固定于变 速器壳体上
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
发动机曲轴凸缘上装有 外壳,泵轮与外壳连接 (或焊接)在一起,随 曲轴一起转动,为液力 偶合器的主动部分。与 泵轮相对安装的涡轮, 与输出轴连接在一起, 为液力变矩器的从动部 分。
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
Mw=Mb-Md 即变矩器输出转矩反 而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
汽车在变工况下行驶时(如起步、经常加减速),锁止离

第二章液力变矩器的结构原理

第二章液力变矩器的结构原理
速度冲击涡轮叶片,使涡轮旋转,再沿涡轮叶片冲向导轮,最后返回泵 轮,形成在液力变矩器环形腔内的循环运动。
涡轮
导轮
泵轮
转矩放大:在泵轮与涡轮转速差较大的情况下,从涡轮流出的液 流冲击导轮正面,由于导轮固定不动,液流对涡轮产生反作用力,所以 此时液流对涡轮的冲击力矩大于泵轮的输入力矩。液力变矩器的转矩放 大倍数一般为2.2左右。
(2)传动效率:
nW
nB
泵轮与涡轮的转速差越大,传动效率越低;反之则传动效率高。 汽车起步后,随涡轮转速的增加,其传动效率提高,转矩减小。
二、液力变矩器:
1、基本结构: 有3个工作轮,即泵轮、涡轮和导轮。
液力变矩器的结构
泵轮
泵轮为主动件,与液力变矩器壳体相连,壳体与发动机曲轴后端的 驱动盘相连。
活塞 壳体
扭转减振器
壳体
活塞 扭转减振器
涡轮 轮毂
涡轮轮毂
分离状态
锁止状态
3、工作过程: 起步时:发动机带动泵轮旋转,工作液在泵轮的带动下以一定速
度冲击涡轮叶片,再沿涡轮叶片冲向导轮,由于导轮固定不动,液流对 涡轮产生反作用力,所以此时液流对涡轮的冲击力矩大于泵轮的输入力 矩。
起步后: • 随着涡轮转速的增加,沿着涡轮叶片冲向导轮叶片的液流的方向 逐渐改变,液流对涡轮的反作用力逐渐减小。 • 涡轮达到一定转速时,液流方向与导轮叶片平行,导轮不起作用, 此时为耦合工况。 • 涡轮转速进一步增大,液流冲击导轮叶片背面,使涡轮输出力矩 小于泵轮输入力矩。 • 当涡轮转速增大至与泵轮转速相等时,工作液循环停止,失去传 递动力的能力。
二、带单向离合器的导轮
1、结构特点:导轮不是完全固定不动,而是通过单向离合器支承
在导轮固定套上,单向离合器可使导轮单方向运转。

液力-第4章 液力变矩器

液力-第4章 液力变矩器
22
图4-9 变 矩器的动 态特性
a)
23
b)
c)
图4-9 变矩器 的动态特性
d)
24
e)
图4-9
变矩器的动态特性
25
D 、 液力变矩器的动态特性是指泵轮和涡轮轴上的动态力矩M B D nT 及转速比i与时间t的关系曲线。 M T 泵轮和涡轮的转速 nB 、 D D MB MB nT nT t 和 i i (t ) 。根据 nB nB t 、 即 M TD M TD t 、 t 、 D D 上述特性曲线,可算出液力变矩器的动态原始特性: B B (t ) 和
图4-3 面叶栅图

力变矩器平
6
(1)当 nT 0 或较低转速时,涡轮出口液流冲击导轮正面, 因此导轮对液流的作用力矩与泵轮力矩同向,由力矩平衡方程 M T M 式, 。B
( 2 )当 nT增加到一定数值时,涡轮出口速度的方向就与导 轮进口的叶片骨线重合,液流顺着导轮叶片流出,导轮进出口 速度相等方向相同时,液流对导轮没有作用,导轮力矩 , 此时 。 MD 0 M T M B (3)若nT继续增大,从速度三角形得出,涡轮出口液流将冲 击导轮背面,导轮力矩(导轮对液流的力矩)与泵轮力矩方向相 反。
MB MT MD 0

(4-1)
(4-2)
M T M B M D
M T前面的负号表示与泵轮力矩MB的方向相反。
4
图4-2 液力变 矩器工作原理
5
为了说明液力变矩器为什么能变矩和不同工况下外力矩的 变化关系,将各叶轮叶片沿中间流线切开,并展成如图4-3所示 的平面叶栅。泵轮转速一定,而涡轮以三种不同的转速旋转, 分析液流方向变化引起叶轮作用力矩的变化情况。

AT液力变矩器系统PPT教学课件

AT液力变矩器系统PPT教学课件
第1页/共43页
第2页/共43页
偶合器的工作过程演示
第3页/共43页
2、偶合器工作原理
原理: 泵轮带动油液
转的力矩MP,油 液带动涡轮转的 力矩MT ,
MP = MT
第4页/共43页
3、液力偶合器的工作过程 转矩传递原理
第5页/共43页
液流的干扰
导环的作用
1-发动机曲轴,2-泵轮,3-涡轮,4、7-涡流, 5、8-环流,6-变速器输入轴,9-发动机转动
第16页/共43页
两种单向离合器结构与原理
第17页/共43页
液 力 变 矩 器 的 工 作 原 理
第18页/共43页
2、液力变矩器的工作原理
1)工作液的流动:
驱动涡轮的工作液经导轮流回泵轮。 仍有环流和涡流。
第19页/共43页
2)导轮的作用:
(增加涡轮的输出力矩)


无பைடு நூலகம்



第20页/共43页
第40页/共43页
检查液力变矩器的安装情况: 用卡尺和直尺测量液力变矩器安装面至自动变速器壳体正面的距离,应为
17.1mm(以维修手册为准),若距离小于标准值,则应检查是否由于安装不当所致 。
第41页/共43页
第42页/共43页
感谢您的观赏!
第43页/共43页
第29页/共43页
5、带锁止离合器的液力变矩器
1)作用 用机械方式直接连接泵轮和
涡轮,将发动机输出动力100 %传给变速器,以提高传动效 率。 2)结构(如右图)
第30页/共43页
3)工作条件
温度:ATF温度正常,达60度以上, 速度:约68-70km/h, 档位:3档或4档,(有些车1、2、3、4档) 制动:无行车制动。

第三章 液力变矩器

第三章  液力变矩器

按涡轮的型式分类



1. 向心涡轮变矩器 循环圆如图3-21(a)所示 . 正透穿 2. 轴流涡轮变矩器 循环圆如图3-21(b)所示 .接近非透穿 3.离心涡轮变矩器 循环圆如图3-21(c)所示。具有负透穿的 无因次特性.
按循环圆中各叶轮的衔接序分类


1.泵轮—涡轮—导轮—泵轮型 记作“B—T—D—B”,绝大多数变矩器为此型。 2.泵轮—导轮—涡轮—泵轮型 记作“B—D—T—B”,由于位于涡轮前面的导轮叶 片,改变了进入涡轮的液流方向,使损失增大, 效率低 。此外由于涡轮位于泵轮之前,涡轮的转 速使其出口速度矩的改变,直接影响泵轮入口, 使泵轮力矩有很大的改变,所以透穿性特别强, 只适用于特殊的场合。 工程机械绝大多数使用泵轮—涡轮—导轮—泵轮 型变矩器
返回
返回

正透穿型变矩器与汽油机特性配合很合理 。因为: 1)因为起动工况i=i0时,共同工作使原动机在力矩 最大点工作,同时,在该点的变矩系数也是最大 值,那么涡轮力矩也可达到最大,因为
2) i0工况也是机器工作机的由静止起动的工况, 负载的惯性阻力矩最大,需要涡轮有最大的驱动 力矩. 3) 变矩器的最高效率工况与原动机最低油耗工况 为同一工况,这样,使整个机器在最经济工况下 运行。



液力变矩器的特性曲线

什么是液力变矩器的特性曲线 ? 液力变矩器的特性曲线有: 1.输出特性曲线(外特性曲线) 2.原始(类型)特性曲线 3.输入特性曲线 4.通用特性曲线 5.液力变矩器系列型谱

变矩器特性理论分析 :
输出特性曲线——外特性曲线
输出特性是指液力变矩器各参数与涡轮转速之间的关系; 它们是由试验和计算得出来的。

自动挡液力变矩器幻灯片

自动挡液力变矩器幻灯片
油泵——油泵的结构和工作原理
叶片泵分为: 定量泵—油泵的排量不变。为保证发动机低速时的正常泵油,以满足自动变速器的工作需要,要求油泵的排量应足够大。但发动机高速时,因泵油量增多,此时的泵油还必须排泄掉,从而造成发动机动力损失。 变量泵—油泵的排量可变。以减少高速运转时的发动机动力损失。其结构特点是:定子不固定,而是绕一个销轴作一定的摆动,以改变定子和转子之间的偏心距,从而改变油泵的排量。
液力传动装置——液力变矩器的工作原理
总结: 液力变矩器的输出转矩可以根据涡轮的转速变化。具体为: 涡轮速度低——涡轮转矩大于泵轮转矩; 涡轮速度等于一设定值——涡轮转矩等于泵轮转矩; 涡轮速度继续升高——由于导轮的单项离合器存在,使得MW=MB ,液力变矩器进入偶合工况。 涡轮速度等于泵轮速度——不传递转矩。 液力变矩器能够改变扭矩的原因是在泵轮和涡轮之间加入了导轮。
液力变矩器的扭矩变化规律
液力传动装置——锁止离合器的结构
1.为什么要有锁止离合器
液力变矩器在偶合区以接近1:1的比例将来自发动机的输入转矩传递至变矩器。但在涡轮和泵轮之间存在着至少4%—5%的转速差。所以变矩器并不是将发动机的动力100%地传给了变速器输入轴,而是有能量损失。 为了防止上述油耗的产生,并降低油耗,当车速大于60KM/H时,锁止离合器会通过机械机构将泵轮与涡轮相连。
液力传动装置——液力变矩器
(二)单向离合器 有滚柱式单向离合器 和 楔块式单向离合器 两种。
液力传动装置——液力变矩器结构
(三)导轮 导轮位于涡轮和泵轮之间。通过单向离合器安装在固定的导轮轴上。涡轮中心的液体流向导轮,被改变方向后流向泵轮。 当液体推动导轮以和泵轮相同方向旋转时,单向离合器允许导轮自由旋转,反之则被锁住不能转动。当导轮静止时,变矩器具有增扭作用;当导轮开始转动时,导轮不再具有增扭作用。 从涡轮回流至泵轮的液体方向取决于泵轮和涡轮之间的转速差,决定变矩器是否能增扭。

液力自动变矩器的结构和工作原理概要PPT学习教案

液力自动变矩器的结构和工作原理概要PPT学习教案
图 2-2 液 力 偶 合 器 工作示 意图
第9页/共45页
2.1.2 液力耦合器的工作原理
当发动机运转时,曲轴带动液力偶合器的壳体和泵 轮旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同 旋转。在离心力的作用下,液压油从泵轮叶片内缘被甩向 外缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作 用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动 ,返回到泵轮的内缘,被泵轮再次甩向外缘。
内部有一个由液压操纵的
闭锁离合器,或称锁止离合器。
第35页/共45页
主动盘
从 动 盘 ( 压 盘)
锁止控制阀接通变 矩器压力油路时
锁止控制阀接通变 矩器回油路时
图2-12 闭锁式液力变矩器
第36页/共45页
锁止控制阀接通变 矩器压力油路时
压盘两侧的压力相 同,闭锁离合器呈分离 状态,动力须经液力变 矩器传递,可充分发挥 液力传动减振吸振、自 适应行驶阻力剧烈变化 的优点,适合于汽车起 步、换档或在坏路面上 行驶工况使用。
利用 液体在循 环流动过 程中动能 的变化来 传递动力 的
第2页/共45页
不同型号的液力 变矩器,结构和
原理相同?
自动变速器 的结构相同 吗?为什么

第3页/共45页
本章主要介绍基本的液力偶合器和液力
变矩器的结构和工作原理
第4页/共45页
2.1 液力耦合器
2.1.1 液力耦合器的结构
图2-1 液力偶合器结构示意图
量不及时散出,变矩器内的油液温度就会急
剧升高,导致变矩器不能工作,因此必须对
变矩器内的油液进行强制冷却。
第40页/共45页
图2-13 变矩器冷却补偿油路系统图
第41页/共45页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)楔块式单向离合器
传递转矩:发动机的转矩通过液力变矩器的主动 元件,再通过ATF传给液力变矩器的从动元件, 最后传给变速器。
无级变速:根据工况的不同,液力变矩器可以 在一定范围内实现转速和转矩的无级变化。
自动离合:液力变矩器由于采用ATF传递动力, 当踩下制动踏板时,发动机也不会熄火,此时相 当于离合器分离;当抬起制动踏板时,汽车可以 起步,此时相当于离合器接合。
减振盘:它与涡轮连接在一起,减振盘上装有减振弹簧,在离合器接合 时,可防止产生扭转振动。
锁止离合器压盘:通过凸起卡在减振盘上,可在油压的作用下轴向移 动。
离合器壳:它与泵轮连接在一起,前盖上粘有一层摩擦材料,以增加 离合器接合时的输出功率Pw 与泵轮上的输入功率Pb之比用η表示。
η=Pw/Pb=Mw·nw /(Mb·nb) 因:Mb=Mw 故:η=nw / nb=i
式中: nb—泵轮转速; nw—涡轮转速; i—液力偶合器的传动比,即输出轴
转速与输入轴转速之比
液力耦合器优缺点:
耦合器只能传递扭矩,但“软连接”给汽车带来多方面 的好处:
Mw=Mb-Md 即变矩器输出转矩 反而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
1.泵轮:泵轮与变矩器壳体连成一体,其内部径 向装有许多扭曲的叶片,叶片内缘则装有让变速
器油液平滑流过的导环。变矩器壳体与曲轴后端 的飞轮相连接。
2.涡轮:涡轮上也装有许多叶片。但涡轮叶片的扭 曲方向与泵轮叶片的扭曲方向相反。涡轮中心有
花键孔与变速器输入轴相连。泵轮叶片与涡轮叶 片相对安装,中间有3~4 mm的间隙。
3.导轮:导轮位于泵轮与涡轮之间,通过单向离合器安装 在与自动变速器壳体连接的导管轴上。它也是由许多扭曲
叶片组成的,通常由铝合金浇铸而成,其目的是为了变矩 器在某些工况下具有增大扭矩的功能。
常见形式: (1)滚柱斜槽式(液力变矩器常用) (2)楔块式(行星齿轮变速器常用)
楔块式
滚柱斜槽式
(1)滚柱斜槽式单向离合器
汽车起步后开始加速 (起步后的中间状态)
涡轮转速nw从零逐渐增加。速 度vb的增加,冲向导轮叶片的 液流的绝对速度vc将随着逐渐 向上倾斜,使导轮上所受转矩 值逐渐减小。
当涡轮和泵轮转速之比达 到0.8-0.85左右时:
Md=0, Mb=Mw
汽车高速运行
若涡轮转速nw继续增大, 液流绝对速度vc的方向冲 击导轮的背面,导轮转矩 方向与泵轮转矩方向相反
驱动油泵:ATF在工作的时候需要油泵提供一 定的压力,而油泵一般是由液力变矩器壳体驱动 的。
涡流: 从泵轮→涡轮→导轮→泵轮的液体 流动
环流: 液体绕轴线旋转的流动
变矩器不仅能传递转矩,而且能在泵轮转矩不变的情 况下,随着涡轮的转速(反映着汽车行驶速度)不同而 改变涡轮输出的转矩数值
增矩过程: MW=Mb+Md
液力变矩器工作原理_图文.pptx
耦合器
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
耦合器传动特点:
如果不计液力损失,传给泵轮的输入转矩与 涡轮上的输出转矩相等
变矩器扭矩的增 大值并不是一个 恒定的值,扭矩 增大值与汽车的 速度有关
汽车起步工况
汽车起步前:
nw=0,nb>0,nw<<nb
(导轮固定)
则 Va(涡流)>Vb
(环流)
Mw=Md+Mb
涡轮转矩Mw大于
泵轮的转矩Mb,即液
力变矩器起了增大转
矩的作用
当汽车处于起步状态,变矩器具有最大 的扭矩增大值,通常可达1.8-2.5倍
液力变矩器特性:
液力变矩器特性--变矩器在 泵轮转速nb和转矩Mb不变 的条件下,涡轮转矩Mw随 其转速nw变化的规律。 液力变矩器传动比i--输出转 速与输入转速之比,即 i=nw/nb≤1。0.8-0.9最佳。
液力变矩器变矩系数--输
出转矩Mw与转入转矩Mb)之 比,用K表示,即 K=Mw/Mb。
①在没有附加其他机械操纵装置的情况下,能够通过它 平稳地切断和接通发动机和驱动轮之间的动力传递,能 够很好地适应汽车平稳起步的要求。
②“软连接”可以通过液体为介质,吸收传动系统的冲 击和振动,延长零部件的寿命和减少噪声
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本 高、效率低,故装有此自动变速器的车在低、高速行驶时, 油耗非常大。
相关文档
最新文档