数理统计练习题+答案
概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
数理统计课后答案.

数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。
025.01015u ⨯±4、假设检验的统计思想是 。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
数理统计考试试题及答案

一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计作业答案

1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是(D )。
(A )∑=-ni iXn122)(μσ是统计量(B )∑=ni iXn122σ是统计量(C )∑=--ni i X n 122)(1μσ是统计量(D )∑=ni i X n12μ是统计量2、设两独立随机变量)1,0(~N X,)9(~2χY ,则YX 3服从(C )。
3、设两独立随机变量)1,0(~N X,2~(16)Y χC )。
4、设n X X ,,1 是来自总体X 的样本,且μ=EX,则下列是μ的无偏估计的是(A ).5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是(B ).(A )3/X σ;(B )414ii X=∑;(C )σ-1X ;(D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X L 为样本,SX ,分别为样本均值和标准差,则下列正确的是(C ).7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为(C ) (A).12X X +(B){}max,15i X i ≤≤(C)52X p + (D)()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。
则2σ的最大似然估计量为(B )。
(A )∑=-n i i X n 12)(1μ(B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11μ(D )()∑=--n i iX X n 1211 9、设总体),(~2σμN X ,1,,n X X ⋅⋅⋅为样本,S X ,分别为样本均值和标准差,则)X Sμ-服从(D )分布.10、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。
数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。
硕士生《数理统计》例题及答案

硕⼠⽣《数理统计》例题及答案《数理统计》例题1.设总体X 的概率密度函数为: 221)(ββx ex f -=)0(>β试⽤矩法和极⼤似然法估计其中的未知参数β。
解:(1)矩法由于EX 为0,πββββββββββββ2002222221][)()2(2)()2(212)(222222222=+-=-=-+-∞+-∞+--∞+-∞++∞∞-dx exeed xx d xedxex dxx f x EX x x x x xπβ22221=-=X E EX DX 令2S DX =得:S πβ2=(2)极⼤似然法∑===-=-∏ni i i x nni x e21111ββββ∑=--=ni ixn L 1221ln ln ββ231ln 2n i i d L n x d βββ==-+∑ 令0ln =βd L d 得∑==n i i x n 122?β2. 设总体X 的概率密度函数为:<≥--=ααβαββαφx x x x ,0),/)(exp(1),;(其中β>0,现从总体X 中抽取⼀组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。
试分别⽤矩法和极⼤似然法估计其未知参数βα和。
解:(1)矩法经统计得:063.0,176.2==S Xβαβαβφαβαααβαα+=-=+-=-===∞+--∞+--∞+----∞+--∞+∞+∞-??x x x x x edx exeexd dx ex dx x x EX ][)(1 )()(222][)(1222222βαβαβαβαβααβαα++=+=+-=-==--∞+∞+----∞+--∞+??EX dx ex ex ed x dx ex EX x x x x222)(β=-=EX EX DX令==2S DX X EX 即==+22SXββα故063.0?,116.2?===-=S S X βα(2)极⼤似然法 )(111),;(αββ===∏X nnX ni eex L i)(ln ln αββ---=X nn L)(ln ,0ln 2αββββα-+-=??>=??X nn L n L 因为lnL 是L 的增函数,⼜12,,,n X X X α≥L所以05.2?)1(==X α令0ln =??βL 得126.0?)1(=-=X X β 3.已知总体ξ的分布密度函数为:+≤≤-=其它,011,21);(θθθx x f(1)⽤矩法估计其未知参数θ;(2)⽤极⼤似然法估计其未知参数θ。
数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以x a c y =+ 成立因为()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为()2211n y i i s y yn ==-∑所以222x ys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()i x P λ: i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i n n i i i i n E X E x Ex n n nn DX D x Dx n n n nλλλλ============∑∑∑∑13.解:(),i x U a b : 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U -: 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i n n i i i i E X E x Ex n n DX D x Dx n n n==========∑∑∑∑14.解:因为()2,iX N μσ: 0i X E μσ-= 1i X D μσ-= 所以 ()0,1i X N μσ-:1,2,,i n =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以()2Y n χ:15. 解:因为()0,1i X N :1,2,,i n =⋅⋅⋅()1230,3X X X N ++:0=1=所以()0,1N :()221χ:同理()221χ:由于2χ分布的可加性,故()222123Y χ=+: 可知13C =16. 解:(1)因为 ()20,i X N σ: 1,2,,i n =⋅⋅⋅ ()0,1i X N σ:所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑: (){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n y n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为()20,i X N σ: 1,2,,i n =⋅⋅⋅()0,1i X N σ:所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑: (){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ:1,2,,i n =⋅⋅⋅()10,1ni N =:所以()22311n i Y n χσ=⎛= ⎝:(){}()()22333210y n Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,i X N σ: 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝::(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为()X t n :存在相互独立的U ,V()0,1U N : ()2V n χ:使X =()221U χ:则 221U X V n=由定义可知 ()21,F n χ:18解:因为()20,i X N σ: 1,2,,i n =⋅⋅⋅()10,1ni N =:()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑: 所以()1nniX Y t m ==:(2)因为()0,1iX N σ: 1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑::所以()221122211,ni n i ii n m n mi i i n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑: 19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2X n χ: 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N : {}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故{}P X c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e λλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b2()a 4. 解:(1)设12,,n x x x L 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑L (-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ _。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率 。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___ ____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p _____时 ,成功次数的方差的值最大,最大值为 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )= 。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ;)(b kX D += 。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ 。
10、θθθ是常数21ˆ ,ˆ的两个 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_ _。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}= 。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )= 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 。
5、设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α= 。
6、利用正态分布的结论,有⎰∞+∞---=+-dx e x x x 2)2(22)44(21π。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 。
8、设(X ,Y )为二维随机向量,D (X )、D (Y )均不为零。
若有常数a >0与b 使{}1=+-=b aX Y P ,则X 与Y 的相关系数=XY ρ 。
9、若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ 。
10、设随机变量X ~N (1/2,2),以Y 表示对X 的三次独立重复观察中“2/1≤X ”出现的次数,则}2{=Y P = 。
1、设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 。
2、四个人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51,则密码能被译出的概率是 。
3、射手独立射击8次,每次中靶的概率是0.6,那么恰好中靶3次的概率是 。
4、已知随机变量X 服从[0, 2]上的均匀分布,则D (X )= 。
5、设随机变量X 服从参数为λ的泊松分布,且{}{}423===X P X P ,则λ= 。
6、设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 。
7、随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 。
8、已知总体X ~ N (0, 1),设X 1,X 2,…,X n 是来自总体X 的简单随机样本,则∑=ni iX12~ 。
9、设T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=-<λT P 。
10、已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 。
1、设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 。
2、设随机变量X 与Y 相互独立,且5.05.011P X -,5.05.011P Y -,则P (X =Y )=_ 。
3、设随机变量X 服从以n , p 为参数的二项分布,且EX =15,DX =10,则n = 。
4、设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 。
5、设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 。
6、设随机变量X 服从区间[0,5]上的均匀分布,Y 服从5=λ的指数分布,且X ,Y 相互独立,则(X , Y )的联合密度函数f (x , y )= ⎩⎨⎧≥≤≤-其它,505y x e y。
7、随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 。
8、设n X X X ,,,21 是来自总体X ~ N (0, 1)的简单随机样本,则∑=-ni iX X12)(服从的分布为 。
9、三个人独立地向某一目标进行射击,已知各人能击中的概率分别为31,41,51,则目标能被击中的概率是 。
10、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E Y = 。
1、设A,B 为两个随机事件,且P(A)=0.7, P(A-B)=0.3,则P(AB )=__ __。
2、设随机变量X 的分布律为21211pX,且X 与Y 独立同分布,则随机变量Z =max{X ,Y }的分布律为 。
3、设随机变量X ~N (2,2σ),且P {2 < X <4}=0.3,则P {X < 0}= 。
4、设随机变量X 服从2=λ泊松分布,则{}1≥X P = 。
5、已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为 。
6、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(X D 。
7、X 1,X 2,…,X n 是取自总体()2,σμN 的样本,则212)(σ∑=-ni iX X~ 。
8、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E X = 。
9、称统计量θθ为参数ˆ的 估计量,如果)(θE =θ。
10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 。
1、设A 、B 为两个随机事件,若P (A)=0.4,P (B)=0.3,6.0)(=⋃B A P ,则=)(B A P 。
2、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(2X E 。
3、设随机变量X ~N (1/4,9),以Y 表示对X 的5次独立重复观察中“4/1≤X ”出现的次数,则}2{=Y P = 。
4、已知随机变量X 服从参数为λ的泊松分布,且P(X =2)=P(X =4),则λ= 。
5、称统计量θθ为参数ˆ的无偏估计量,如果)(θE = 。
6、设)(~),1,0(~2n x Y N X ,且X ,Y 相互独立,则~n YX。
7、若随机变量X ~N (3,9),Y ~N (-1,5),且X 与Y 相互独立。
设Z =X -2Y +2,则Z ~ 。
8、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它00,10,6),(3y x xe y x f y ,则E Y = 。
9、已知总体n X X X N X ,,,),,(~212 σμ是来自总体X 的样本,要检验202σσ=:o H ,则采用的统计量是 。
10、设随机变量T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=<λT P 。
1、设A 、B 为两个随机事件,P (A)=0.4, P (B)=0.5,7.0)(=B A P ,则=)(B A P 。
2、设随机变量X ~ B (5, 0.1),则D (1-2X )= 。
3、在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的概率为 。
4、设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望E X = 。
5、将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于 。
6、设(X , Y )的联合概率分布列为若X 、Y 相互独立,则a = ,b = 。
7、设随机变量X 服从[1,5]上的均匀分布,则{}=≤≤42X P 。
8、三个人独立地破译一份密码,已知各人能译出的概率分别为31,41,51,则密码能被译出的概率是 。
9、若n X X X N X ,,,),,(~2121 σμ是来自总体X 的样本,2,S X 分别为样本均值和样本方差,则SnX )(μ-~ 。
10、θθθ是常数21ˆ,ˆ的两个无偏估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ 。
1、已知P (A)=0.8,P (A -B)=0.5,且A 与B 独立,则P (B) = 。
2、设随机变量X ~N (1,4),且P{ X ≥ a }= P{ X ≤ a },则a = 。
3、随机变量X 与Y 相互独立且同分布,21)1()1(=-==-=Y P X P ,21)1()1(====Y P X P ,则P (X=Y )= 。
4、已知随机向量(X , Y )的联合分布密度⎩⎨⎧≤≤≤≤=其它010,104),(y x xy y x f ,则EY = 。
5、设随机变量X ~N (1,4),则{}2>X P = 。
(已知Φ(0.5)=0.6915,Φ(1.5)=0.9332) 6、若随机变量X ~N (0,4),Y ~N (-1,5),且X 与Y 相互独立。
设Z =X +Y -3,则Z ~ 。
7、设总体X ~N (1,9),n X X X , , ,21 是来自总体X 的简单随机样本,2,S X 分别为样本均值与样本方差,则∑=-n i i X X 12~)(91 ;∑=-n i i X 12~)1(91 。
8、设随机变量X 服从参数为λ的泊松分布,且{}{}423===X P X P ,则λ= 。
9、袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为 。