多元函数的条件极值与柯西不等式

合集下载

多元函数的极值与条件极值

多元函数的极值与条件极值

多元函数的极值与条件极值在数学分析中,极值是一个重要的概念。

对于多元函数而言,我们可以通过求取偏导数或利用拉格朗日乘数法来确定其极值点。

在这篇文章中,我们将探讨多元函数的极值以及条件极值。

一、多元函数的极值在开始讨论多元函数的极值之前,我们先来回顾一元函数的极值。

对于一个实数域上的函数f(x),如果存在x=a,使得在a的某个去心邻域内,函数值小于(或大于)f(a),则称f(a)是函数f的一个极大(或极小)值。

同样地,我们可以将这一概念推广到多元函数上。

考虑一个定义在n维欧几里得空间上的函数f(x₁,x₂,...,xₙ),其中x₁,x₂,...,xₙ是实数。

我们称向量x=(x₁,x₂,...,xₙ)为函数f的一个驻点,如果在x的某个邻域内,函数值在x点取得极值。

对于多元函数,我们需通过求取偏导数来判断其极值点。

偏导数的定义如下:对于函数f(x₁,x₂,...,xₙ),它在x=(a₁,a₂,...,aₙ)处的偏导数∂f/∂xᵢ (i=1,2,...,n)是当变量xᵢ在点(x₁,x₂,...,xₙ)处以及其他变量a₁,a₂,...,aₙ保持不变时的导数。

求解偏导数后,我们可以通过将偏导数相应的变量取0,得到一组等式,从而解得极值点。

二、多元函数条件极值在实际问题中,我们经常会遇到有约束条件的优化问题,这就引出了条件极值的概念。

对于一个满足一组约束条件的多元函数,我们要在满足条件的前提下,找到它的极值点。

拉格朗日乘数法是求解带有约束条件的多元函数极值的常用方法。

设函数f(x₁,x₂,...,xₙ)的约束条件为g(x₁,x₂,...,xₙ)=0。

首先构建拉格朗日函数L(x₁,x₂,...,xₙ,λ)=f(x₁,x₂,...,xₙ)+λg(x₁,x₂,...,xₙ),其中λ为拉格朗日乘数。

然后,求解函数L的偏导数∂L/∂xᵢ(i=1,2,...,n)和∂L/∂λ,并将它们置为0。

解这组方程,即可得到满足条件的极值点。

高等数学 第九章 第八节 多元函数的极值及其求法

高等数学 第九章 第八节  多元函数的极值及其求法

25
例8 求函数 f ( x , y , z) ln x ln y 3ln z 在球面
x2 y2 z2 5r2 ( x 0 , y 0 , z 0) 上的最 大值。
第九章 第八节
26
内容小结
多元函数的极值 (取得极值的必要条件、充分条件) 多元函数的最值 拉格朗日乘数法
第九章 第八节
解得唯一驻点 (6 , 4 , 2),
故最大值为 umax 63 42 2 6912
第九章 第八节
21
例7
在第一卦限内作椭球面
x2 a2
y2 b2
z c
2 2
1 的切
平面,使切平面与三个坐标面所围成的四面体体
积最小,求切点坐标。
解 设 P( x0 , y0 , z0 ) 为椭球面上一点,
6
6 x0 y0z0
在条件
x02 a2
y02 b2
z02 c2
1 下求
V
的最小值点
令 u ln x0 ln y0 ln z0
G( x0 , y0 , z0 )
ln
x0
ln
y0
ln z0
(
x02 a2
y02 b2
z02 c2
1)

G
x0
0 , Gy0
0 , Gz0
0
x02 a2
y02 b2
A
zxx
|P
1 2
z
,
B
zxy
|P
0
,
C
zyy
|P
2
1
z
AC
B2
1 (2 z)2
0 (z
2)
所以函数在
P

函数极值的求解方法

函数极值的求解方法

函数极值的求解方法目录摘要............................................................................................................ 错误!未定义书签。

ABSTRACT................................................................................................... 错误!未定义书签。

目录. (1)一、引言 (1)二、一元函数的极值问题 (2)(一)一元函数极值的定义 (2)(二)一元函数极值的一般求解方法 (2)1.配方法 (2)2.导数法 (3)三、多元函数的极值问题 (6)(一)多元函数极值的定义 (6)(二)多元函数极值的一般求解方法 (6)1.多元函数极值存在的充分必要条件 (6)2.隐函数F(x,y)=0极值的求解 (8)3.多元函数条件极值的求解 (10)四、函数极值的实际应用 (14)(一)利润最大化问题的应用 (14)(二)效用最大化问题的应用 (15)五、结论 (16)参考文献 (16)致谢............................................................................................................ 错误!未定义书签。

引言函数极值的求解在数学研究中是一个非常重要的部分,在理论学习和实际应用中占有重要的地位,是推动微积分发展的重要要素之一。

极值的思想运用在解决许多数学问题时都起着至关重要的作用。

当前在函数极值问题的研究中已经有不少的见解,并且在许多的期刊和学术论文中,理论和实践已经达到了广泛、透彻和深刻的认识与应用。

为了更好地掌握这些理论的关系,通过运用函数极值解决相关问题,我们需要更系统、深入地整理和研究这些知识。

运用柯西不等式求条件最值初探

运用柯西不等式求条件最值初探


r 2’3 + ) c的最 大值 为 、 + , 而
r:
;等号 成立的 条什足 : =
就 J,+ + + ‘ √ - 有 ar “ … J , b L
_ ・
代入忆 已知 条懈
麻 的 』 :的 值 23 在 一 次 形 式 的 条件 下 。求 负一 次 函数 的 最 小 值 ; 或 者 在 . 负一 次 形 式 的 条 件 下 。求 一 次 函数 的 最 小值
分‘ =・・) [, I’ 析没 ( , 去I j , = + :丽 J÷ : + - ÷+ ÷ + + +
. . .
山柯西不等式 :
㈤没(,, ) [ … j , = … 赤志, , , 志

(Hale Waihona Puke .(. ) 西z击 ) 击 =』+ v+ : Ij : : ,




、 :: . f . : 入



, v=
音 : I得小 l 最他6 l t 取
2 +: :1 x+ 2.求 +2’ :的最 +3
22 在 二 次 形 式 的 条 件 下 . 求 一 次 函数 的 最 大值
维普资讯
红 科 技 2 0-第7 7 0 7- 期 7  ̄
运 用柯 西 不 等 式 求条 件 最 值 初 探
徐 绍 海
(绍 兴 越 秀 外 I i 职 业 学 院 ) f
摘 要 新课 标 高中数 学教材增加 了柯 西不等式 的选学 内容 ,既 符合 学生可接 受性原 则,又充分体现 了数 学知识的 应用价 值,特 别在求 多元 函数的奈件最值 中更加显示 了它的优势 因此 , 究应用柯西不等式求 多元函数的方法其有 实用价值 研 关键词 柯西不等式 条件 最值 向量

《柯西不等式》课件

《柯西不等式》课件

感谢您的观看
THANKS
应用场景
幂和不等式在数学分析和最优化理论等领域有应用,例如在求解约束优化问题、估计函数 的极值以及分析函数的收敛性等方面。
05
习题与解答
习题一:证明柯西不等式
总结词
通过数学推导证明柯西不等式
详细描述
这道习题要求学生掌握柯西不等式的证明方法,通过数学推导和证明,理解柯西不等式的原理和性质 。
习题二:应用柯西不等式解决问题
总结词
运用柯西不等式解决实际问题
详细描述
这道习题要求学生能够运用柯西不等式解决实际问题,如最大值、最小值问题等,培养学生的数学应用能力。
习题三:探索柯西不等式的变体
总结词
研究柯西不等式的变体形式
详细描述
这道习题要求学生探索柯西不等式的变体形式,理解不同形式的不等式及其应用,培养学生的数学探究能力。
详细描述
平方和不等式是指对于任意非负实数序列a_1, a_2, ..., a_n,有(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) >= (a_1b_1 + a_2b_2 + ... + a_nb_n)^2。
应用场景
平方和不等式在数学、物理和工程领域有广泛的应用,例如在求解最优 化问题、估计数值稳定性以及分析信号处理中的频率响应等方面。
时。
数学期望
柯西不等式在大数定律的研究中也有应用, 如在研究强大数定律和弱大数定律时。
大数定律
利用柯西不等式,可以推导出一些数学期望 的性质和计算方法。
概率不等式
柯西不等式在概率不等式的证明中也有应用 ,如Chebyshev不等式等。

大学数学易考知识点多元函数的极值和最值

大学数学易考知识点多元函数的极值和最值

大学数学易考知识点多元函数的极值和最值大学数学易考知识点:多元函数的极值和最值多元函数的极值和最值是大学数学中的一个重要概念,在数学分析和最优化理论中具有广泛的应用。

本文将介绍多元函数的极值和最值的相关概念、计算方法及其应用。

一、极值和最值的定义在介绍多元函数的极值和最值之前,首先需要了解极值和最值的定义。

1. 极值:在某个定义域内,如果一个函数在某一点的某个邻域内的函数值始终大于(或小于)该点的函数值,那么这个函数在该点就有一个极大值(或极小值)。

极大值和极小值统称为极值。

2. 最大值和最小值:在某个定义域内,如果一个函数在该定义域内的所有函数值中存在一个最大值(或最小值),那么这个函数在该定义域就有一个最大值(或最小值)。

二、求解多元函数的极值和最值为了求解多元函数的极值和最值,需要掌握以下几种常用的计算方法。

1. 偏导数法偏导数法是求解多元函数极值和最值的一种常用方法。

步骤如下:(1)求出多元函数的所有偏导数。

(2)令所有偏导数等于零,解得所有的稳定点。

(3)计算这些稳定点的函数值,并找到其中的最大值和最小值。

2. 条件极值法条件极值法是在满足一定条件下求解多元函数的极值和最值的方法。

步骤如下:(1)建立多元函数的约束条件。

(2)应用拉格朗日乘数法或者将约束条件代入目标函数,将多元函数的求解问题转化为含有一个变量的函数的求极值问题。

(3)对这个含有一个变量的函数应用一元函数的求导法则,求得极值点。

(4)将求得的极值点代入原多元函数,求得极值和最值。

3. 边界法边界法是求解多元函数的最值的一种方法。

步骤如下:(1)找到多元函数的定义域的边界。

(2)计算定义域的边界上的函数值,并找出其中的最大值和最小值。

三、多元函数极值和最值的应用多元函数的极值和最值在众多学科中都有着广泛的应用,这里介绍其中的两个应用领域。

1. 经济学中的优化问题在经济学中,很多问题可以抽象为多元函数的极值和最值问题。

例如,生产者如何选择生产要素的投入比例以最大化利润,消费者如何选择商品的购买数量以最大化效用等。

高考数学柯西不等式知识点总结

高考数学柯西不等式知识点总结

高考数学柯西不等式知识点总结柯西不等式和排序不等式是两个非常重要的不等式,它们在高等数学中的应用很普遍。

下面店铺给大家带来高考数学柯西不等式知识点,希望对你有帮助。

高考数学柯西不等式知识点(一)所谓柯西不等式是指:设ai,bi∈R(i=1,2…,n,),则(a1b1+a2b2+…anbn)2≤(a12+a22+…+an2)(b12+b22+…+bn2),等号当且仅当==…=时成立。

柯西不等式证法:柯西不等式的一般证法有以下几种:(1)柯西不等式的形式化写法就是:记两列数分别是ai,bi,则有(∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.我们令f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。

(2)用向量来证.m=(a1,a2......an) n=(b1,b2......bn)mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.柯西不等式应用:可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。

巧拆常数:例:设a、b、c 为正数且各不相等。

求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)分析:∵a 、b 、c 均为正数∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又 9=(1+1+1)(1+1+1)证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9又 a、b 、c 各不相等,故等号不能成立∴原不等式成立。

简述多元函数条件极值的求法

简述多元函数条件极值的求法

2021.16科学技术创新作者简介:辛小青(1980-),女,籍贯:内蒙古呼和浩特,理学硕士,职称:讲师,主要研究方向:图论、数学教育。

简述多元函数条件极值的求法辛小青(内蒙古科技大学包头师范学院数学科学学院,内蒙古包头014030)在实际生活中,我们会遇到附加条件的多元函数的最值问题,即函数的自变量除了要满足在定义域内的条件还需满足相应的某一条件,例如:容积一定的长方体箱子材料最省的问题,设长方体的长、宽、高分别为x ,y ,h ,容积V =abh 一定,确定长方体的长、宽、高,使得在体积V =abh 一定的情况下表面积S=2xy+2xh+2yh 材料最省,这种另加条件的极值就叫做条件极值。

下面给出条件极值的两种基本求法:方法(一):是利用在数学分析中学到的知识想办法将条件极值转化为无条件极值进行求解,即先由条件φ(x ,y )=0求出y=ψ(x ),然后将其带入到z =f (x ,y )中得到z =f [x ,ψ(x )],再去求无条件极值。

方法(二):是利用拉格朗日乘数法求条件极值的问题,即把条件极值问题,归结为对于拉格朗日函数L (x ,y )=f (x ,y )+λφ(x ,y )求无条件极值的问题(拉格朗日乘数法求极值在下文中会进行详细论述)。

特别注意:由于拉格朗日乘数法是条件极值存在的必要条件,因此我们求到的点是可能存在极值的点,然后我们要继续依据定义或实际意义来判断所求得的点是不是条件极值点。

1代入消元法我们可以用一个量替换另一个量来达到降元的效果,这种替换变量的方法在数学领域内称之为代入消元法,例如上面提出的问题就可以用消元法来解答。

代入消元法能够实现降元的目的,而且我们能够把条件极值变成求解无条件极值,这样相对来说就能够让解题更为顺畅和简便。

不过这种办法也是有局限性的,我们应该看到这种方法更合适那些简单的约束函数,而且要求能够进行替代,但很多时候是不能够替代的。

例1求函数f (x ,y ,z )=xyz 在x-y+z =0条件下的一切驻点和驻点处的函数值,如果有极值,然后继续判断是哪种极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档