(条件极值)多元函数的极值与拉格朗日乘数法

合集下载

多元函数求极值(拉格朗日乘数法)-8页文档资料

多元函数求极值(拉格朗日乘数法)-8页文档资料

第八节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。

熟练使用拉格朗日乘数法求条件极值。

教学重点:多元函数极值的求法。

教学难点:利用拉格朗日乘数法求条件极值。

教学内容:一、 多元函数的极值及最大值、最小值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。

如果都适合不等式 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。

使函数取得极值的点称为极值点。

例1 函数2243y x z +=在点(0,0)处有极小值。

因为对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。

从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面2243y x z +=的顶点。

例2 函数22y x z +-=在点(0,0)处有极大值。

因为在点(0,0)处函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。

例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。

因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。

定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:证 不妨设),(y x f z =在点),(00y x 处有极大值。

依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有类似地可证从几何上看,这时如果曲面),(y x f z =在点),,(000z y x 处有切平面,则切平面成为平行于xOy 坐标面的平面00=-z z 。

多元函数极值

多元函数极值

提示: 当(x, y)=(0, 0)时, z=0, 而当(x, y)≠(0, 0) 时, z>0. 因此z=0是函数的极小值.
首页 上页 返回 下页 结束 铃
一,多元函数的极值及最大值,最小值
极值的定义 设函数z=f(x, y)在点(x0, y0)的某个邻域内有定义, 如果对 于该邻域内任何异于(x0, y0)的点(x, y), 都有 f(x, y)<f(x0, y0)(或f(x, y)>f(x0, y0)), 则称函数在点(x0, y0)有极大值(或极小值)f(x0, y0). 例2 函数z = x2 + y2 在 (0, 0)处有极大值 点 .
首页
上页
返回
下页
结束

二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 有时可以把条件极值问题化为无条件极值问题. 例如, 求V=xyz在条件2(xy+yz+xz)=a2下的最大值.
a2 2xy 由条件2(xy+ yz + xz)=a2 , 解得z = 得 , 于是 2(x+ y) xy a2 2xy V= ( ). 2 (x+ y) 这就把求条件极值问题转化成了求无条件极值问题.
首页 上页 返回 下页 结束 铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 (2)用拉格朗日乘数法 在多数情况下较难把条件极值转化为无条件极值, 需要 用一种求条件极值的专用方法, 这就是拉格朗日乘数法. 下面导出函数z=f(x, y)在条件(x, y)=0下取得的极值的必 要条件. 假定f(x, y)及(x, y)有各种所需要的条件.

多元函数的极值与条件极值

多元函数的极值与条件极值

多元函数的极值与条件极值在数学分析中,极值是一个重要的概念。

对于多元函数而言,我们可以通过求取偏导数或利用拉格朗日乘数法来确定其极值点。

在这篇文章中,我们将探讨多元函数的极值以及条件极值。

一、多元函数的极值在开始讨论多元函数的极值之前,我们先来回顾一元函数的极值。

对于一个实数域上的函数f(x),如果存在x=a,使得在a的某个去心邻域内,函数值小于(或大于)f(a),则称f(a)是函数f的一个极大(或极小)值。

同样地,我们可以将这一概念推广到多元函数上。

考虑一个定义在n维欧几里得空间上的函数f(x₁,x₂,...,xₙ),其中x₁,x₂,...,xₙ是实数。

我们称向量x=(x₁,x₂,...,xₙ)为函数f的一个驻点,如果在x的某个邻域内,函数值在x点取得极值。

对于多元函数,我们需通过求取偏导数来判断其极值点。

偏导数的定义如下:对于函数f(x₁,x₂,...,xₙ),它在x=(a₁,a₂,...,aₙ)处的偏导数∂f/∂xᵢ (i=1,2,...,n)是当变量xᵢ在点(x₁,x₂,...,xₙ)处以及其他变量a₁,a₂,...,aₙ保持不变时的导数。

求解偏导数后,我们可以通过将偏导数相应的变量取0,得到一组等式,从而解得极值点。

二、多元函数条件极值在实际问题中,我们经常会遇到有约束条件的优化问题,这就引出了条件极值的概念。

对于一个满足一组约束条件的多元函数,我们要在满足条件的前提下,找到它的极值点。

拉格朗日乘数法是求解带有约束条件的多元函数极值的常用方法。

设函数f(x₁,x₂,...,xₙ)的约束条件为g(x₁,x₂,...,xₙ)=0。

首先构建拉格朗日函数L(x₁,x₂,...,xₙ,λ)=f(x₁,x₂,...,xₙ)+λg(x₁,x₂,...,xₙ),其中λ为拉格朗日乘数。

然后,求解函数L的偏导数∂L/∂xᵢ(i=1,2,...,n)和∂L/∂λ,并将它们置为0。

解这组方程,即可得到满足条件的极值点。

多元函数求极值(拉格朗日乘数法)

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。

熟练使用拉格朗日乘数法求条件极值。

教学重点:多元函数极值的求法。

教学难点:利用拉格朗日乘数法求条件极值。

教学内容:一、 多元函数的极值及最大值、最小值定义 设函数在点的某个邻域内有定义,对于该邻域内),(y x f z =),(00y x 异于的点,如果都适合不等式),(00y x ,00(,)(,)f x y f x y <则称函数在点有极大值。

如果都适合不等式(,)f x y ),(00y x 00(,)f x y ,),(),(00y x f y x f >则称函数在点有极小值.极大值、极小值统称为极值。

(,)f x y ),(00y x ),(00y x f 使函数取得极值的点称为极值点。

例1 函数在点(0,0)处有极小值。

因为对于点(0,0)的2243y x z +=任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。

从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面的顶点。

2243y x z +=例2 函数在点(0,0)处有极大值。

因为在点(0,0)处22y x z +-=函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于平面下方的锥面的顶点。

xOy 22y x z +-=例3 函数在点(0,0)处既不取得极大值也不取得极小值。

因为在xy z =点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。

定理1(必要条件) 设函数在点具有偏导数,且在点),(y x f z =),(00y x 处有极值,则它在该点的偏导数必然为零:),(00y x 0),(,0),(0000==y x f y x f y x 证 不妨设在点处有极大值。

多元函数的条件极值和拉格朗日乘数法

多元函数的条件极值和拉格朗日乘数法

多元函数的条件极值和拉格朗日乘数法、条件极值、拉格朗日乘数法1. 转化为无条件极值在讨论多元函数极值问题时,如果遇到除了在定义域中寻求驻点(可能的极值点)外,对自变量再无别的限制条件,我们称这类问题为函数的无条件极值。

如求的极值,就是无条件极值问题。

然而在实际中,我们也会遇到另一类问题。

比如,讨论表面积为的长方体的最大体积问题。

若设长方体的三度为,则体积,同时应满足于是我们的问题的数学含义就是:当自变量满足条件下取何值时能使函数取得最大值。

(这里我们暂不论证指出这个最大值就是极大值)。

一般抽象出来,可表为如下形式:即函数在条件下的取极大(小)值问题。

今后,我们称这种问题为函数的条件极值问题。

对自变量有附加条件的极值称为条件极值。

一般称为目标函数,为约束条件( 或约束方程) 。

对于有些实际问题, 可以把条件极值问题化为无条件极值问题。

例如上述问题, 由条件,解得,于是得V .只需求V 的无条件极值问题。

例6 求函数在约束条件下的条件极值。

解由约束条件可解出代入目标函数,有:令得驻点由于当时,,当时,在时取极大值,又当时,由约束条件可解出,而,此例说明条件极值可有如下一种解法:如果能从约束方程中解出一个自变量,代入目标函数后,就可转化为无条件极值。

通过讨论无条件极值可得问题的解答。

但在很多实际问题中,往往不容易从约束条件中解出一个自变量,从而上述方法就失效了。

因此,对条件极值我们应讨论一般解法。

2. 关于条件极值的拉格朗日乘数法在很多情形下, 将条件极值化为无条件极值并不容易。

需要另一种求条件极值的专用方法, 这就是拉格朗日乘数法。

拉格朗日乘数法:要找函数z = f ( x , y ) 在条件j( x , y ) = 0 下的可能极值点, 可以先构成辅助函数F ( x , y ) = f ( x , y ) + lj ( x , y) , 其中l 为某一常数。

然后解方程组.由这方程组解出x , y 及l , 则其中( x , y )就是所要求的可能的极值点。

(条件极值)多元函数的极值与拉格朗日乘数法

(条件极值)多元函数的极值与拉格朗日乘数法
17
多元函数的极值与拉格朗日乘数法
例 已知长方体长宽高的和为18, 问长、宽、高 各取什么值时长方体的体积最大? 解 设长方体的长、宽、高分别为x、y、z ,
由题意知,周长: x y z 18
长方体的体积为 V xyz
18
下面要介绍解决条件极值问题的一般 方法: 拉格朗日乘数法
13
多元函数的极值与拉格朗日乘数法
拉格朗日乘数法: 现要寻求目标函数 z f ( x, y ) 在约束条件 ( x , y ) 0
利用隐函数的概念与求导法 (1)
(2)
下取得 极值的必要条件. 如函数(1)在( x0 , y0 ) 取得所求的极值, 那末首先有 ( x0 , y0 ) 0 (3) 由条件 ( x, y ) 0 确定y是x的隐函数 y y( x ). 不必将它真的解出来,则 z f ( x , y ( x )),于是函数(1) 在( x0 , y0 ) 取得所 求的极值. 即, x x0 取得极值.
则f ( x , y )在点( x0 , y0 ) 处是否取得极值的条件如下:
(1) AC B 2 0时有极值,
当A 0时有极大值, 当A 0时有极小值;
(2) AC B 2 0时没有极值; (3) AC B 2 0时 可能有极值,也可能无极值.
7
多元函数的极值与拉格朗日乘数法
14
多元函数的极值与拉格朗日乘数法
z f ( x , y ( x ))在 x x0 取得极值.
z f ( x , y ) (1) ( x , y ) 0 ( 2)
由一元可导函数取得极值的必要条件知:
f dy f dz 0 (4) x x y 0 dx x x 0 x0 dx x x0 x x y y0 y y0 ( x, y ) 0 x ( x 0 , y0 ) dy 其中 代入(4)得: y ( x 0 , y0 ) dx x x0 ( x0 , y0 ) 0 ( 3) x ( x 0 , y0 ) f x ( x 0 , y0 ) f y ( x 0 , y0 ) 0 ( 5) y ( x 0 , y0 ) (3) ,(5)两式 就是函数(1)在条件(2)下的在( x0 , y0 ) 取得极值的必要条件.

多元函数的极值与拉格朗日乘法

多元函数的极值与拉格朗日乘法

THANKS
感谢观看
充分条件
如果多元函数$f(x)$在点$x_0$处的Hessian矩阵(二阶导数矩阵)是正定的或 负定的,则该点为极小值或极大值点。
多元函数的极值示例
球面函数
考虑函数$f(x,y,z)=x^2+y^2+z^2$,该函数在原点$(0,0,0)$ 处取得极小值。
倒立方体函数
考虑函数$f(x,y,z)=-(x^2+y^2+z^2)$,该函数在原点 $(0,0,0)$处取得极大值。
拉格朗日乘法的应用场景
拉格朗日乘法适用于求解受约束条件 限制的多元函数的极值问题,如线性 规划、非线性规划、最优控制等问题。
在实际应用中,拉格朗日乘法可以用 于求解生产计划、资源分配、物流优 化等问题,以实现最优资源配置和最 大经济效益。
拉格朗日乘法的计算步骤
第一步
构造拉格朗日函数,将约束条件与目标函数 相结合。
第二步
对拉格朗日函数求极值,得到可能的极值点。
第三步
验证得到的极值点是否满足约束条件,并确 定是否为真正的极值点。
第四步
根据实际情况选择合适的算法进行求解,如 梯度下降法、牛顿法等。
04
拉格朗日乘法在多元函数极值中的应

应用方法
定义拉格朗日乘数
对于多元函数$f(x,y)$,引入F(x,y,lambda) = f(x,y) + lambda(g(x,y))$。
求解条件极值
将拉格朗日函数$F(x,y,lambda)$分别对$x, y, lambda$求偏导数,并令偏导数等于零,得到条件 极值方程组。
解方程组求极值
解条件极值方程组,得到可能的极值点,再 根据函数的性质判断这些点是否为极值点。

用拉格朗日数乘法求条件极值

用拉格朗日数乘法求条件极值

用拉格朗日数乘法求条件极值拉格朗日乘数法是一种在条件极值问题中常用的数学方法。

它适用于多元函数在一定约束条件下求极值的情况,能够帮助我们找到目标函数在约束条件下取得极值的点。

下面我们将详细介绍拉格朗日乘数法的原理和应用,并用一个具体的例子来说明。

首先,我们来介绍拉格朗日乘数法的原理。

假设我们要求一个多元函数f(f_1,f_2,…,f_f)在一定约束条件下的极值,即要求出f=(f_1,f_2,…,f_f)使得f(f)取得最大或最小值。

而约束条件可以用等式的形式表示,即f(f_1,f_2,…,f_f)=0。

为了求解这个问题,我们引入拉格朗日乘子f,将约束条件加入目标函数的表达式中,并构造一个新的函数f(f_1,f_2,…,f_f,f)=f(f_1,f_2,…,f_f)+ff(f_1,f _2,…,f_f)。

接下来,我们需要求解f(f_1,f_2,…,f_f,f)对各个自变量f_1,f_2,…,f_f和f的偏导数,并令其等于零,即求解以下方程组:∂f/∂f_1=0,∂f/∂f_2=0,…∂f/∂f_f=0,∂f/∂f=0.我们解得的解集即为目标函数在约束条件下的可能极值点。

下面我们用一个生动的例子来说明拉格朗日乘数法的应用。

假设我们要求函数f(f,f)=f^2+f^2的最小值,且约束条件为f+f=1。

我们首先构造拉格朗日函数f(f,f,f)=f^2+f^2+f(f+f−1)。

然后通过求解以下方程组来求解目标函数的极值点:∂f/∂f=2f+f=0,∂f/∂f=2f+f=0,∂f/∂f=f+f−1=0.解方程组得到f=1/2,f=1/2,f=−1。

将得到的解f=1/2,f=1/2代入f(f,f)中,可得到最小值为1/2。

通过这个例子,我们可以看出,拉格朗日乘数法能够在约束条件下帮助我们找到函数的极值点。

在实际中,拉格朗日乘数法常常被应用于经济学、物理学、工程学等领域中的优化问题求解。

综上所述,拉格朗日乘数法是一种强大的数学工具,可以用于求解多元函数在一定约束条件下的极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 多元函数的极值与 拉格朗日乘数法
多元函数的极值和最值 条件极值 拉格朗日乘数法
小结
思考题
作业
1
第八章 多元函数微分法及其应用
多元函数的极值与拉格朗日乘数法
一、多元函数的极值和最值
1.极大值和极小值的定义 一元函数的极值的定义: 是在一点附近 将函数值比大小. 定义 设在点P0的某个邻域, f ( P ) f ( P0 ), 则称
所以 z f (1,1) 6 为极大值.
11
多元函数的极值与拉格朗日乘数法
求由方程 x 2 y 2 z 2 2 x 2 y 4z 10 0
确定的函数z f ( x , y )的极值.
解 法二 配方法 方程可变形为
( x 1)2 ( y 1)2 ( z 2)2 16
于是
z 2 16 ( x 1)2 ( y 1)2

显然, 当x 1, y 1时, 根号中的极大值为4,
由※可知, z 2 4 为极值. 即 z 6 为极大值, z 2 为极小值.
12
多元函数的极值与拉格朗日乘数法
极值只可能在驻点处 注 由极值的必要条件知, 取得. 然而,如函数在个别点处的偏导数不存在,
这些点当然不是驻点, 但也可能是极值点. 如: 函数 z x 2 y 2 在点(0,0)处的偏导数 不存在,但函数在点(0,0)处都具有极大值. 在研究函数的极值时,除研究函数的驻点外, 还应研究偏导数不存在的点.
13
多元函数的极值与拉格朗日乘数法
选择题
2003年考研数学(一), 4分
在点(0,0)处, AC B 2 9a 2 0
故 f ( x , y )在(0,0)无极值; 在点(a,a)处, AC B 2 27a 2 0 且A 6a 0 故 f ( x, y ) 在(a,a)有极大值, 即 f (a, a) a 3 .
9
多元函数的极值与拉格朗日乘数法
f z ( x0 , y0 , z0 ) 0.
仿照一元函数, 凡能使一阶偏导数同时为零的 点, 均称为函数的驻点.
注 驻点ห้องสมุดไป่ตู้
极值点
如, 点(0,0)是函数z xy的 驻点, 但不是极值点. 如何判定一个驻点是否为极值点
6
多元函数的极值与拉格朗日乘数法
3.极值的充分条件 定理2 (充分条件) 设函数z f ( x, y )在点( x0 , y0 ) 的某邻域内连续, 有一阶及二阶连续偏导数, 又 f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0, 令 f xx ( x0 , y0 ) A, f xy ( x0 , y0 ) B, f yy ( x0 , y0 ) C ,
18
x
多元函数的极值与拉格朗日乘数法
2 2 2 2 y 4上 求 f ( x , y ) x 4 y 9在D : x
的最大值与最小值. 解 令f x 2 x 0, f y 8 y 0 驻点 (0,0) 2 2 将x y 4代入f ( x, y ), 得
2 y 0 , z 1 x x 0 x 1上, *在边界线 1 1 3 dz 由于 1 2 x , 有驻点 x ,函数值 z( ,0) 2 4 2 dx
又在端点(1,0)处, 有 z (1,0) 1.
17
多元函数的极值与拉格朗日乘数法
y
x y1
z 1 x x2 2 y
证 不妨设 z f ( x, y )在点( x0 , y0 )处有极大值, 则对于( x0 , y0 )的某邻域内任意( x , y ) ( x0 , y0 ), 都有 f ( x , y ) f ( x0 , y0 ), 故当y y0 , x x0时,
有f ( x, y0 ) f ( x0 , y0 ), 说明一元函数 f ( x, y0 )在x x0处有极大值, 必有 f x ( x0 , y0 ) 0; 类似地可证 f y ( x0 , y0 ) 0.
A z xx |P 1 2 z B z xy |P 0
1 P| yyz C z 2
1 故 AC B 0 ( z 2) 2 (2 z ) 函数在P有极值.
2
将P (1,1) 代入原方程, 有 z1 2, z2 6 1 当 z1 2时, A 0, 4 所以 z f (1,1) 2 为极小值; 1 当 z2 6时, A 0, 4
(D) 根据所给条件无法判断点(0, 0)是否为f (x, y) 的极值点.
14
多元函数的极值与拉格朗日乘数法
4.多元函数的最值 与一元函数相类似,可利用函数的极值来 求函数的最大值和最小值.
求最值的一般方法
将函数在D内的所有嫌疑点的函数值及 在D的边界上的最大值和最小值相互比较, 其中最大者即为最大值,最小者即为最小值.
有时, 极小值可能比极大值还大.
3
多元函数的极值与拉格朗日乘数法
函数 容易判断的.
存在极值, 在简单的情形下是
z
例 函数 z 3 x 2 4 y 2
2 2 z x y 例 函数
椭圆抛物面
x z x
O
在(0,0)点取极小值. (也是最小值).
y
下半个圆锥面
O
在(0,0)点取极大值. (也是最大值). 例 函数 z xy 在(0,0)点无极值.
将上方程组再分别对x, y求偏导数, 1 1 A z xx |P , B z , yy | P xy |P 0, C z 2 z 2 z
10
多元函数的极值与拉格朗日乘数法
x 2 y 2 z 2 2 x 2 y 4z 10 0
f ( x, y ) 3 y 13 g( y ) 令g( y ) 6 y 0 y 0
2
y [2,2]
此时 x 4 y 2 2
当y 2时, 均有x 0
f (0,0) 9 f (2,0) 13 f (0,2) 25
19
故f ( x, y)在D上的最大值为 25, 最小值为 9.
8
多元函数的极值与拉格朗日乘数法
例 求函数 f ( x, y ) 3axy x 3 y 3 (a 0) 的极值. 2 f 3 ay 3 x 0 x 驻点 解 (0,0),(a, a ). 2 f y 3ax 3 y 0
又 f xx 6 x, f xy 3a, f yy 6 y .
已知函数f (x, y)在点(0, 0)的某个邻域内连续,
f ( x , y ) xy 则 且 lim 2 2 2 1, x 0 ( x y ) y0
(A) 点(0, 0)不是f (x, y)的极值点. (B) 点(0, 0)是f (x, y)的极大值点. (C) 点(0, 0)是f (x, y)的极小值点.
求由方程 x 2 y 2 z 2 2 x 2 y 4z 10 0
确定的函数z f ( x , y )的极值.
解 法一 将方程两边分别对x, y求偏导数, 2 x 2 z z x 2 4z x 0 2 y 2z zy 2 4zy 0 由函数取极值的必要条件知, 驻点为 P (1,1),
16
y
x y1
D
O
x
多元函数的极值与拉格朗日乘数法
z 1 x x2 2 y
y
*在边界线 x 0, 0 y 1上,
z 1 2y x y1 D dz 2 0, z 1 2 y 单调上升. 由于 O x dy 所以, z (0,0) 1 最小, z (0,1) 3 最大.
点P0为函数的极大值点. f ( P0 )为极大值.
类似可定义极小值点和极小值.
2
多元函数的极值与拉格朗日乘数法
函数的极大值与极小值统称为函数的 极值.
函数的极大值点与极小值点统称为函数的 极值点.
注 多元函数的极值也是局部的, 是与P0的邻域
内的值比较. 一般来说:极大值未必是函数的最大值. 极小值未必是函数的最小值.
则f ( x, y )在点( x0 , y0 ) 处是否取得极值的条件如下:
(1) AC B 2 0时有极值, 当A 0时有极大值, 当A 0时有极小值; (2) AC B 2 0时没有极值; (3) AC B 2 0时 可能有极值, 也可能无极值.
7
多元函数的极值与拉格朗日乘数法
y
马鞍面
z
O
x
y
4
多元函数的极值与拉格朗日乘数法
2.极值的必要条件 定理1(必要条件) 设函数z f ( x, y )在点( x0 , y0 ) 具有偏导数, 且在点( x0 , y0 )处 有极值, 则它在该
点的偏导数必然为零: f x ( x0 , y0 ) 0,
f y ( x0 , y0 ) 0.
*在边界线 x y 1, 0 x 1上,
D
O
z 1 x x 2 2(1 x ) 3 3 x x 2 dz 由于 3 2 x 0 (0 x 1), 函数单调下降, dx z ( 0 ,0 ) 1 所以, 最值在端点处. z (0,1) 3 1 (3) 比较 z (0,0), z (1,0), z (0,1) 及z ( ,0) z (1,0) 1 2 1 3 1 3 zmax z(0,1) 3 z( 2 ,0) 4 zmin z ( ,0) 2 4
由于V在D内只有一个驻点, 且长方体体积 一定有最大值, 故当的长、宽、高都为6时长方 体体积最大.
相关文档
最新文档