4.2水质模型及应用讲解

合集下载

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。

第三章 第四节_水质模型

第三章 第四节_水质模型

3--176
cT cS cP cW 3--110
cW
cT K pcp
1
RT
KT cT KPcP 1
ln 2
t1
2
KT
(cP KP 1)
这一关系说明,吸着的净效应是降低有机毒物从水中消失的总速率,另外还可以
看到颗粒物的吸着将增加半衰期。
20
3. 稳态时的浓度(动态平衡)
假设: 有机毒物输入水体的速率为 RI, 有机毒物在水环境中消失的速率为 RL
化合物迁移转化过程:
负载过程(输入过程):人为排放,大气沉降,陆地 径流
形态过程 :酸碱平衡、吸着作用 迁移过程:沉淀-溶解作用、对流作用 、挥发作用 、
沉积作用 转化过程:生物降解 、光解作用、水解作用、氧化还
原 生物积累过程:生物浓缩 、生物放大
18
1. 有机物的消失速率
有机物因转化和挥发从水环境中消失速率(RT)是各 消失速率(Ri)的总和:
S-P模式的适用条件: ①河流充分混合段;
②污染物为耗氧性有机污染物;
③需要预测河流溶解氧状态;
④河流恒定流动;
⑤连续稳定排放。
6
(1)零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
7
零维水质模型(河流完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后的污染物浓度为
8
河流完全混合模式的适用条件
①河流充分混合段; ②持久性污染物; ③河流恒速流动; ④废水连续稳定排放。
9
(2)一维水质模型

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍
第四节 水质模型
水质模型,是一个用于描述物质在水环境中的混合、 迁移、扩散和转化过程(包括物理、化学、生物作用过 程)的数学方程(或方程组) .

水质模型的基本原理是质量守恒原理;建立水质模 型的目的是用来描述污染物数量与水环境影响因素之间 的定量关系,从而为水质分析、预测和水环境管理提供 基础的量化依据。

本节讨论的水质模型主要是:氧平衡模型、湖泊富 营养化模型和有毒有机污染物归趋模型。

一、氧平衡模型
1. Streeter-Phelps(S-P)模型(河流水质自净模型)

S-P模型的建立基于两项假设: (1)只考虑好氧微生物参加的有机物降解反应,并 认为该反应为一级反应。 (2)河流中的耗氧只是有机物降解反应引起的。有 机物的降解反应速率与河水中溶解氧(DO)的减少速 率相同,大气中的氧进入水体的复氧速率与河水中 的亏氧量 D 成正比。

极限距离:
极限溶解氧:
(DC为极限氧亏)
2.托马斯(Thomas)模型

对于一维静态河流,在S—P模型的基础上考虑沉淀、絮 凝、冲刷和再悬浮过程对BOD变化的影响,引入了BOD沉 浮系数k3 dL
u -(k1 k3 ) L dx u dD k L - k D 1 2 dx
湖泊水质模型的类型:
湖泊水质模型可划分为:多元相关模型;输入输出 模型;富营养化预测模型和扩散模型,这里仅讨论富 营养化预测模型。

2. 富营养化预测模型 对于停留时间很长、水质基本处于稳定状态的中小 型湖泊和水库,可视为一个均匀混合的水体。 沃兰伟德假定,湖泊中某种营养物的浓度随时间的 变化率,是输入、输出和在湖泊内沉积的该种营养物量 的函数,用质量平衡方程表示就是:

水质预测模型与应用

水质预测模型与应用
以及随机误差项的现值和滞后值进行回归所建立的模型。
• p--代表预测模型中采用的时序数据本身的滞后数(lags)
to-Regressive项。
tegrated项。 Average项。
,也叫做AR/Au
• d--代表时序数据需要进行几阶差分化(0,1,2),才是稳定的,也叫In
• q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving
ARIMA (p,d,q)建模步骤
• • •
1.获取被观测系统时间序列数据; 2.对数据绘图,观测是否为平稳时间序列;对于非平稳时间序列要先进行d阶 差分运算,化为平稳时间序列; 3.经过第二步处理,已经得到平稳时间序列。要对平稳时间序列分别求得其自 相关系数ACF 和偏自相关系数PACF ,通过对自相关图和偏自相关图的分析, 得到最佳的阶层 p 和阶数 q
只与上一时刻的位置,
ARIMA (p,d,q)模型的特例
• ARIMA(1,0,0) = first-order autoregressive model • 一阶自回归模型 • p=1,d=0,q=0。说明时序数据是稳定的和自相关的。一个时刻的值只与
上一个时刻的值有关。
自适应变步长BP神经网络(ABPM)应用
• 4.水质预测的神经网络模型
自适应变步长BP神经网络(ABPM)应用
• 上游的水质变化将影响下游的水质变化,以上流断面的水质检测指标为
输入,以表1和2中的13组数据为样本,选取前10组数据用于训练网络,后3 组用于检验,利用训练好的网络模型对主要水质指标(COD、NH+4- N、TN、 TP)分别进行模拟计算。
水质预测模型与应用—渠冰
基于MIKE软件的水体污染扩散模拟—杨昱昊

水质污染物迁移模型的建立与应用

水质污染物迁移模型的建立与应用

水质污染物迁移模型的建立与应用水质污染是目前全球所面临的一个严峻的环境问题。

随着人口的增长和工业化的加速,水质污染的问题越发突出。

而水质污染物的迁移模型的建立与应用,则是解决水质污染问题的一个重要手段。

一、水质污染物迁移模型的概念与分类水质污染物迁移模型是指在环境水体中污染物的传输与迁移规律所建立的数学模型。

其基本思想是通过对水质污染物的环境学特性和物理化学特性进行分析,来预测污染物在水体中的影响程度和传播方向。

根据模型结构,可将水质污染物迁移模型分为以下两类:1. 经验模型经验模型是指在特定的地理位置和特定的环境条件下对污染物迁移规律进行的试验和实测数据进行统计分析所建立的模型。

这种模型具有实际性,但由于其建立方法比较简化,因此预测结果在应用时要慎重。

2. 理论模型理论模型是指根据污染物的环境特性和性质、水流动力学特性等因素来建立的模型。

这种模型建立的基础更为科学,因此在一些科研领域得到了广泛的应用。

二、水质污染物迁移模型的应用水质污染物迁移模型的应用范围非常广泛,主要体现在以下几个方面:1. 污染源识别通过建立污染物迁移模型,可以确定污染物的来源和漏油位置,从而明确污染源,有利于减少对水质环境的破坏。

2. 环境预测水质污染物迁移模型可用于分析环境中各种污染物的行为,从而预测其对环境的影响程度和危害性。

3. 环境监测水质污染物迁移模型可用于环境监测中,提高监测数据的准确性。

4. 预警和紧急处理通过建立污染物迁移模型,可以提前预警环境中的问题,及时对水质污染进行紧急处理,降低对于环境和水源的影响。

三、水质污染物迁移模型的发展趋势随着科学技术的不断发展,与环境问题有关的技术也得到了快速的发展。

目前,水质污染物迁移模型发展的趋势主要体现在以下两个方面:1. 综合模型的发展多种因素会同时影响水质污染物的迁移规律,如水流动力学、地形和地貌、水质化学性质等等,因此未来的水质污染物迁移模型将趋向于发展成为一个综合模型,将多个因素进行综合考虑。

《水质模型》教学大纲

《水质模型》教学大纲

《水质模型》教学大纲一、课程编号:0102004二、课程名称:水质模型(Water Quality Models)三、学分、学时:1.5学分;24学时四、教学对象:水文与水资源工程专业本科生五、开课单位:水资源环境学院水文系六、先修课程高等数学、工程数学、物理学、水力学、水文学原理、水环境化学、生态学概论等课程七、课程性质、作用、教学目标该课程为“水文与水资源工程专业”的必修课,课程的主要任务是使学生了解污染物在水体中的混合迁移机制,掌握各种不同水体的主要水质数学模型,及模型参数率定、水质预测等内容,为未来从事水资源与水环境领域的工作打下扎实的基础。

八、教学内容基本要求通过课堂教学、课外做练习与查看文献等教学环节,使学生:1.弄清水体污染的基本概念;2.掌握污染物在水体中的混合迁移机制及水质模型的基本方程;3.掌握河流水质模型;4.掌握湖泊与水库的水质模型;5.熟悉水质模型的差分解法6.掌握模型参数估计方法;7.了解面污染源水质模型;8.掌握水质预测方法。

课程主要内容如下:第一章绪论1.1 水污染概念1.2 污染物来源1.3 溶解氧与水体自净1.4 水体自净能力影响因素1.5 水质评价指标与水质预报项目第二章水质预报基础2.1 污染物在河流中的混合迁移2.2 水体中溶解氧的变化2.3 水质模型基本方程第三章河流水质模型3.1一维稳态单变量模型3.2一维稳态双变量模型3.3一维河流的分段水质模拟计算3.4河口水质模型第四章湖泊与水库水质模型4.1零维水质模型4.2冯伦凡德模型4.3分层湖泊水质模型第五章水质模型的差分解5.1差分概述5.2差分解第六章模型参数估计6.1单参数的估计6.2多参数的同时估计第七章面源污染水质模型7.1面源污染的特征和影响因素7.2水质模型的建立7.3模型的率定和验证7.4面污染统计模型第八章水质预测8.1污染物预测8.2地表水环境预测举例九、实践性环节的内容、要求实践性环节主要是配合课程中的重要章节做课外作业,包括结合实际,需上机编程计算的综合性题目,以巩固基本概念和理论知识,培养学生分析问题和解决问题的能力。

swat模型水质模块的改进及其在海河流域中的应用

swat模型水质模块的改进及其在海河流域中的应用

swat模型水质模块的改进及其在海河流域中的应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!改进SWAT模型水质模块及其在海河流域中的应用1. 引言SWAT(Soil and Water Assessment Tool)模型是一种广泛应用于水资源管理和环境保护的集水区水文模型。

水质模型及应用

水质模型及应用
氧垂曲线与临界点(最大氧亏值处)
饱和溶解氧及氧亏的计算
DOs 468 31.6T
DOs:饱和溶解氧(mg/L); T:气温(℃)
DDO DsO
D:氧亏值,mg/L; DO:实际的溶解氧值,mg/L
cc0
expK1
x 8640u0
处假定完全混合 后的初始浓度的计算
• 1、利用S-P模型算出DO浓度为饱和值80%的位置 (即距始端的距离)和该点相应的BOD浓度值。
• 2、计算最大氧亏处的临界DO浓度和临界点位置
• 3、利用EXCEL求解并绘制出BOD、DO的浓度沿 程变化曲线(选作)
托马斯模式 P75
c
c0exp
(K1
K3
)
x 86400u
D
K2
K1c0 (K1
K3
)
exp
(K1
K3
)
x 86400u
exp
K2
x 86400u
D0
exp
K2
x 86400u
xc
K2
u (K1
K3
)
ln
K2 K1 K3
K2(K1 K3 K2)D0 K1(K1 K3)c0
c0 (c0Qp chQh )/(Qp Qh )
D0 (D0Qp DhQh )/(Qp Qh )
河流水质模型
• 河流完全混合模式、一维稳态模式、S-P模式(适 用于河流的充分混合段)
• 托马斯模式(适用于沉降作用明显河流的充分混 合段)
• 二维稳态混合模式与二维稳态混合衰减模式(适 用于平直河流的混合过程段)
• 弗罗模式与弗-罗衰减模式(适用于河流混合过程 段以内断面的平均水质)
• 二维稳态累积流量模式与二维稳态混合衰减累积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质模型及应用
胡莺
水质数学模型分类
按上游来水和排污随时间的变化情况: 动态模式、稳态模式 按水质分布状况: 零维、一维、二维和三维 按模拟预测的水质组分: 单一组分、多组分耦合模式 水质数学模式的求解方法及方程形式 解析解模式、数值解模式
水质模式中坐标系的建立
以排放点为原点 Z轴铅直向上,X、Y轴为水平方向 X方向与主流方向一致 Y方向与主流垂直
一维稳态模式 P72
对于一般河流,由于推流导致的污染物迁移作用要比 弥散作用大得多,可忽略弥散作用:

C 为污染物的浓度; Dx 为纵向弥散系数, ux 断面平均流速; K 为污染物衰减系数
模型的适用对象:污染物浓度在各断面上分布均匀的中小
型河流的水质预测 P72例4-2
BOD-DO耦合模型(S-P模型)
• 2、计算最大氧亏处的临界DO浓度和临界点位置
• 3、利用EXCEL求解并绘制出BOD、DO的浓度沿程变 化曲线(选作)
托马斯模式 P75
x c exp ( K 1 K 3 ) c0 86400 u x exp ( K 1 K 3 ) 86400 u K 1c 0 x D D exp K 0 2 K 2 ( K1 K 3 ) 86400 u x exp K 2 86400 u K2 K 2 ( K 1 K 3 K 2 ) D0 u xc ln K 2 ( K1 K 3 ) K1 K 3 K 1 ( K 1 K 3 )c 0 c0 (c0 Q p c h Qh ) /(Q p Qh ) D0 ( D0 Q p Dh Qh ) /(Q p Qh )
计算时注意单位换算;以 及起始点处假定完全混合 后的初始浓度的计算
D:氧亏值mg/L; D0:计算初始断面的氧亏值mg/L; K2:大气复氧系数(1/d); K1:耗氧系数(1/d); u:河流的平均流速(m/s); Xc:最大氧亏点到计算初始点的距离,m
H
U
作业
已知某均匀河段的平均水温为21℃,耗氧系数K1为 0.7/d;大气复氧系数为1.4/d。河段始端排入的废 水流量为80000m3/d;废水中BOD为600mg/L,DO浓 度为0。河流上游的河水流量为40m3/s,河水中BOD 浓度为0,DO达到饱和。河水与污水混合后河段的 平均流速为28km/d。 • 1、利用S-P模型算出DO浓度为饱和值80%的位置 (即距始端的距离)和该点相应的BOD浓度值。
河流水质模型
• 河流完全混合模式、一维稳态模式、S-P模式(适 用于河流的充分混合段) • 托马斯式与二维稳态混合衰减模式( 适 用于平直河流的混合过程段) • 弗罗模式与弗-罗衰减模式(适用于河流混合过程 段以内断面的平均水质) • 二维稳态累积流量模式与二维稳态混合衰减累积 流量模式(适用于弯曲河流的混合过程段) • 河流pH模式与一维日均水温模式
二维稳态混合衰减模式
c pQp x c( x, y) exp K1 c h 86400 u H M y xu
岸边排放
uy2 u ( 2 B y ) 2 exp exp 4 M x 4 M x y y
污染物与河水完全混合所需的距离--混合过程段
充分混合:当断面上任意一点的浓度与断面平均浓度之差小 于平均浓度的5%时,可以认为达到充分混合。 混合过程段距离 xn 的计算 P73(式4-35、36)
xn
0.4B 0.6a Bux
Ey
a-
排放口到岸边的距离,m B - 河流宽度,m Ey - 废水与河水的横向混合系数,m2/s u x- 河流的平均流速, m/s
河流完全混合模式 P71
c (c pQp chQh ) /(Qp Qh )
C -废水与河水完全混合后污染物的浓度,mg/L Qh -排污口上游来水流量,m3/s Ch-上游来水的水质浓度,mg/L Qp -污水流量,m3/s Cp -污水中污染物的浓度, mg/L 适用条件:(1)废水与河水迅速完全混合后的污染物浓度计 算;(2)污染物是持久性污染物,废水与河水经一定的时间 (距离)完全混合后的污染物浓度预测。 河流为恒定流动; 废水连续稳定排放 P72例4-1
模型的假设条件: P73
BOD的衰减和溶解氧的复氧都是一级反应; 反应速率常数是定常的; 水体耗氧全部是由BOD衰减引起; 溶解氧完全来源于大气复氧。
模型的解析解 (教材公式4-40有误,修改) 适用条件:河流充分混合段,污染物为耗氧
有机物,需要预测河流溶解氧状态;河流为恒 定流动,污染物连续稳定排放
氧垂曲线与临界点(最大氧亏值处)
饱和溶解氧及氧亏的计算
468 DOs 31 .6 T
DOs:饱和溶解氧(mg/L); T:气温(℃)
D DOs DO
D:氧亏值,mg/L; DO:实际的溶解氧值,mg/L
S-P模式
x c c0 exp K 1 式4-39 86400 u K 1c0 x x x D exp K exp K D exp K 1 2 0 2 K 2 K1 86400 u 86400 u 86400 u D0 K 2 K 1 式4-44 1 c K 1 0 c0 (c p Q p c h Qh ) /(Q p Qh ) D0 ( D p Q p Dh Qh ) /(Q p Qh ) 86400 u K2 xc ln K 2 K1 K1
相关文档
最新文档