初二数学下册证明题(中等难题含答案).docx
人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。
初中数学几何证明经典试题(含答案)【范本模板】

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证..如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。
初二下册数学证明题及答案

D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)

一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
初二数学证明题

ABDC1)如图,在等腰ΔABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连结AP 交BC 于点E ,连结BP 交AC 于点F 。
(1)证明:∠CAE=∠CBF ; (2)证明:AE=BF ;2)如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
3)已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC4)如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD,求证:CD = 2BD5)如图所示。
在△ABC 中,D 、E 分别是AC 和AB 上 的一点,BD 与CE 交于点O ,给出下列四个条件: ①DCO EBO ∠=∠; ②CDO BEO ∠=∠;③CD BE =;④OC OB =。
(1) 上述四个条件中,哪两个条件可以判定△ABC 是等腰三角形(用序号写出所有的情形))2(选择)1(小题中的一种情形,证明△ABC 是等腰三角形。
6)已知:如图,在□ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD , E 在AD 上,BE =12 cm ,CE =5 cm .求□ABCD 的周长和面积. 7)如图,AB=CD ,AD=BC ,EF 经过AC 的中点O ,分别交AB 、CD 于E 、F 。
求证:OE=OF.A E D C B8)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂 足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.9)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种 做法合理吗?为什么?10) 如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF .11)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.12)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE (1)写出图中一对全等的三角形,并写出它们的所有对应角; (2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变, 请找出这个规律.13)如图,已知点M 、N 分别是边BC 、CA 的中点,BN=QN ,AM=PM 。
初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 A N FE CDMB · A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
初二数学下册证明题(中等难题 含答案)

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
DCEBGAF三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。
(第23题)EDBAF五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD交于点O ,且AC ⊥BD ,DH ⊥BC 。
⑴求证:DH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。
六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形?(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。
……第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky 的图象过点D ,则其 解析式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:已知:如图,在直角梯形ABCD中, AD∥ BC,∠ ABC=90°, DE⊥ AC于点 F,
交 BC于点 G,交 AB的延长线于点 E,且 AE AC .
A
D
(1)求证: BG FG ;
(2)若 AD DC 2 ,求 AB的长.
F
B C
G
E
二:如图,已知矩形 ABCD,延长 CB到 E,使 CE=CA,连结 AE并取中点 F,连结AE并取中点 F,连结 BF、DF,求证 BF⊥DF。
三:已知 : 如图 , 在矩形 ABCD中 ,E 、F 分别是边 BC、AB上的点 , 且 EF=ED,EF⊥ ED.
求证 :AE 平分∠ BAD.
E
B C
F
A D
(第 23题)
四、(本题 7 分)如图,△ ABC中,M是 BC的中点, AD是∠ A 的平分线, BD⊥ AD于 D,AB=12,
AC=18,求 DM的长。
五、(本题 8 分)如图,四边形A BCD为等腰梯形, AD∥BC,AB=CD,对角线 AC、BD交于点 O,
且AC⊥ BD, DH⊥ BC。
⑴求证: DH=1
(AD+BC)2
⑵若 AC=6,求梯形ABCD的面积。
六、 (6 分)、如图,P是正方形ABCD对角线 BD 上一点, PE⊥ DC, PF⊥ BC, E、 F 分别为垂
足,若 CF=3,CE=4,求 AP 的长 .
七、 (8 分 ) 如图,等腰梯形ABCD中, AD∥ BC,M、N分别是 AD、BC的中点, E、F 分别是 BM、CM的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形请直接写出结论;
(2)判断并证明四边形MENF是何种特殊的四边形
(3)当等腰梯形ABCD的高 h 与底边 BC满足怎样的数量关系时四边形MENF是正方形(直接
M D
写出结论,不需要证明).A
E F
B
N C 选择题:
15、如,每一个形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰如
,依此律第10 个形的周。
⋯⋯
第一个图第二个图第三个图
16、如,矩形ABCD角 AC原点 O, B 点坐
y k的象点 D,其
(― 1,―3),若一反比例函数
x
解析式。
一:解:( 1)明:Q ABC 90°, DE ⊥ AC 于点 F ,
ABCAFE .
D
A
Q AC AE, EAF CAB ,F
△ ABC ≌△ AFE
AB AF .
B C 接 AG ,G
AG= AG,AB= AF,
Rt△ ABG ≌ Rt △ AFG .E
BG FG .
(2)解:∵ AD= DC,DF⊥ AC,
11
AF AC AE .
2 2
E 30°.
FAD E30°,
AF 3 .
AB AF 3 .
二:明:∵ CE=CA AF=EF
∴C F⊥AE ∠AFC=∠EFC=90
在直角三角形AEB中, BF 是斜上中
∴B F=AF
又: AD=BC CF=CF
∴△ BCF≌△ ADF
∠B FC=∠AFD
而∠ AFD+∠DFC=AFC=90
∴∠ BFC+∠DFC=∠BFD=90
∵B F⊥DF
三:明:∵四形ABCD是矩形
∴∠ B=∠ C=∠ BAD=90° AB=CD
∴∠ BEF+∠BFE=90°
∵E F⊥ ED∴∠ BEF+∠ CED=90°
∴∠ BEF=∠CED∴∠ BEF=∠ CDE
又∵ EF=ED∴△ EBF≌△ CDE
∴BE=CD
∴B E=AB∴∠ BAE=∠ BEA=45°
∴∠ EAD=45°
∴∠ BAE=∠EAD
∴AE 平分∠ BAD
四、解:延BD交 AC
E
于
∵BD⊥ AD⋯⋯⋯⋯⋯⋯⋯ 1 分
∴∠ ADB=ADE=90
∵AD是∠ A 的平分
∴∠ BAD=EAD⋯⋯⋯⋯⋯⋯⋯ 2 分在△ ABD与△ AED中
BAD EAD
AD AD
ADB ADE
∴△ ABD≌△ AED⋯⋯⋯⋯⋯⋯⋯ 3 分
∴BD=ED AE= AB=12⋯⋯⋯⋯⋯⋯⋯ 4 分
∴EC=AC- AE=18- 12=6⋯⋯⋯⋯⋯⋯⋯ 5 分
∵M是 BC的中点
∴DM=1
EC=3⋯⋯⋯⋯⋯⋯⋯ 7 分
2
五:⑴ 明: D 作 DE∥ AC交 BC延于 E⋯⋯ 1 分∵AD∥ BC
∴四形 ACED平行四形⋯⋯⋯⋯⋯ 2 分∴CE=AD DE=AC
∵ABCD等腰梯形
∴BD = AC=CE
∵AC⊥ BD
∴DE⊥ BD
∴△ DBE等腰直角三角形⋯⋯⋯⋯⋯⋯ 4 分∵DH⊥ BC
∴DH=1
BE=
1
(CE+BC) =
1
( AD+BC)⋯⋯⋯⋯⋯⋯⋯ 5 分222
⑵∵ AD=CE
∴S
ABCD 1
( AD BC ) DH
1
(CE BC ) DH S DBE⋯⋯⋯⋯7分22
∵△ DBE等腰直角三角形BD=DE=6
∴ S DBE 1
6 6 18 2
∴梯形 ABCD的面18⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分
注:此题解题方法并不唯一。
六: 20、 (5 分 )
解:连结 PC 。
∵四边形 ABCD 是正方形,
∴AD=DC ,∠ ADP=∠ CDP ,
∵PD=PD ,
∴△ APD ≌△ CPD ,
∴ A P=CP
∵四边形 ABCD 是正方形,∴∠ DCB=90°,
∵PE ⊥ DC ,PF ⊥ BC ,∴四边形
PFCE 是矩形
∴ P C=EF 。
∵∠ DCB=90°,
∴ 在 Rt CEF 中, EF 2
CE 2 CF 2 32 4 2
25 ,
∴ EF 5 ,
∴ A P=CP=EF=5。
(其它方法证明也一样得分)
七、 (8 分) 解:(1)△ AMB ≌△ DMC ;△ BEN ≌△ CFN 2分
( 2)判断四边形 MENF 为菱形;
3
分
证明:∵ ABCD 为等腰梯形,
AB CD ,∠ A ∠D , 又∵ M 为 AD 的中点, ∴ MA MD ∴ = = = ∴△ AMB ≌△ DMC ,∴ BM CM ;
4 分
=
又∵ E 、F 、 N 分别为 BM 、 CM 、BC 中点,
∴ MF NE1MC,ME NF 1
BM ,(或 MF∥ NE, ME∥ NF ;)
5
分
= == =
2
2
∴EM=NF=MF=NE;
∴四边形 MENF为菱
形.6分
)问判断四边形 MENF仅为平行四边形,并正确证明的只给
3(说明:第( 2
分.)
()当 h1BC(或 BC h 或 BC MN)时, MENF为正方形.
8分
3==2=2
2
选择题:
15 、 3216
3、 y
x。