指数运算及指数函数的性质
指数函数及其性质

(0<a<1)
y
y=ax
(a>1)
图 象
y=1
(0,1) 0 x
(0,1)
y=1
0 x
a>1
0<a<1
a>1
0<a<1
1.图象全在x轴上方,与x轴无限接近。
1.定义域为R,值域为(0,+). 性 2.当x=0时,y=1 3.在R上是增 函数 3.在R上是减 函数
图 象 特 征
2.图象过定点(0,1) 3.自左向右图 3.自左向右图 象逐渐上升 象逐渐下降 4.图象分布在左 下和右上两个 区域内 4.图象分布在左 上和右下两个区 域内
(1), (6), (7)是指数函数。
已知f(x)是指数函数,且其图象
过点(2, 9),求f(0),f(1),f(-3)的值.
2、指数函数的图象和性质: (1) 作出函数y 2 的图象.
x
(2)
1 作出函数y 的图象. 2
x
x
y2
x
…
-3
-2
-1.5
-1
-0.5
0
0.5
x
y
(2)
(1)
( 3)
( 4)
(0,1)
O
x
x
(4)y d 的图象,
x
x
比较a, b, c, d与1的大小关系 .
c d 1 a b.
y
对于多个指 数函数来说, 底数越大的图 象在 y 轴右侧 的部分越高.
(0,1)
O
x
简称:右侧 底大图高.
指数函数的图象和性质
a>1
y
指数函数和对数函数知识点总结

指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。
2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。
M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。
指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数与指数函数高考知识点

指数与指数函数高考知识点指数和指数函数是高考数学中的重要知识点,涉及到数学中的指数概念、指数运算、指数函数及其性质等内容。
本文将以深入浅出的方式,详细介绍指数与指数函数的相关知识。
一、指数的概念及性质指数是数学中常用的表示方式,用于表示一个数的乘方。
指数的定义为:若a为非零实数,n为自然数(n≠0),则aⁿ称为以a为底的指数。
其中,a称为底数,n称为指数。
指数的性质有以下几点:1. 任何非零数的0次方都等于1,即a⁰=1(a≠0);2. 任何非零数的1次方都等于它本身,即a¹=a(a≠0);3. 指数相同、底数相等的两个指数相等,即aⁿ=aᵐ(a≠0,n≠0,m≠0);4. 任何数的负整数次方都可以表示为其倒数的相应正整数次方,即a⁻ⁿ=1/(aⁿ)(a≠0,n≠0);5. 不同底数、相同指数的指数大小可以通过底数的大小来判断,当0<a<b时,aⁿ<bⁿ(a,b,n都是实数且n>0)。
二、指数运算法则指数运算是指在进行乘方运算时,如何将指数进行运算。
在指数运算中,有以下几条法则:1. 乘法法则:同底数的指数相加,保持底数不变,指数相加,即aⁿ⋅aᵐ=aⁿ⁺ᵐ(a≠0,n≠0,m≠0);2. 除法法则:同底数的指数相减,保持底数不变,指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ(a≠0,n≠0,m≠0);3. 乘方法则:一个数的乘方再乘以另一个数的乘方,底数不变,指数相乘,即(aⁿ)ᵐ=aⁿᵐ(a≠0,n≠0,m≠0);4. 开方法则:一个数的乘方再开方,底数不变,指数取两个数的最小公倍数,即(aⁿ)^(1/ᵐ)=aⁿ/ᵐ(a≠0,n≠0,m≠0)。
三、指数函数的定义与图像指数函数是一种特殊的函数形式,具有以下定义:形如y=aᵘ(a>0,且a≠1)的函数称为指数函数。
在指数函数中,a称为底数,u称为自变量,y称为因变量。
指数函数的图像特点如下:1. 当底数0<a<1时,函数图像呈现下降趋势,越接近x轴,函数值越接近于0;2. 当底数a>1时,函数图像呈现上升趋势,越接近x轴,函数值越接近于0;3. 当底数a=1时,函数图像为水平直线y=1,与自变量无关。
指数函数的性质与计算

指数函数的性质与计算指数函数是数学中一类重要的函数,具有独特的性质和计算方法。
本文将介绍指数函数的定义、性质以及常见的计算方法。
1. 指数函数的定义指数函数是以底数为常数,指数为自变量的函数,一般表示为f(x) = a^x,其中a为底数,x为指数。
底数a必须为正数且不等于1,指数x可以是任意实数。
指数函数的定义域为实数集R,值域为正实数集。
2. 指数函数的性质2.1 单调性当底数a大于1时,指数函数随着指数x的增大而增大,表现为单调递增的特点;当底数a在区间(0,1)内时,指数函数随着指数x的增大而减小,表现为单调递减的特点。
2.2 对称性指数函数在x轴上存在一个对称中心,即函数图像关于x轴对称。
2.3 渐近线指数函数在x趋近于无穷大时,函数值趋近于正无穷;在x趋近于负无穷大时,函数值趋近于0。
因此,指数函数的图像与x轴和y轴均有渐近线。
2.4 特殊值当x为0时,指数函数等于1,即f(0) = a^0 = 1;当底数a为0时,指数函数在x大于0时等于0,在x小于0时无定义。
3. 指数函数的计算方法3.1 指数函数的乘法与除法指数函数具有乘法和除法的运算性质。
当指数相同的两个指数函数相乘时,底数相乘,指数不变,即a^x * a^y = a^(x+y);当指数相同的两个指数函数相除时,底数相除,指数不变,即(a^x) / (a^y) = a^(x-y)。
3.2 指数函数的幂运算指数函数可以进行幂运算。
当指数为整数时,可以直接进行计算,例如a^2 = a * a,a^3 = a * a * a;当指数为分数时,可以通过化简为根式进行计算,例如a^(1/2) = √a,a^(1/3) = ∛a。
3.3 指数函数的对数运算对数是指数函数的逆运算,可以将指数函数的幂运算转化为对数运算。
对数以底数为常数,幂为自变量的函数,通常表示为loga(x),其中a为底数,x为幂。
底数a必须为正数且不等于1,幂x可以是任意实数。
指数的运算与指数函数

指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
高中数学指数运算与指数函数课件

(2)f (x)=2x2+x+1-1 2=1-2x+2 1, 因为 2x+1>1,所以 0<2x+2 1<2, 即-2<-2x+2 1<0, 所以-1<1-2x+2 1<1。 所以 f (x)的值域为(-1,1)。
(3)g(x)为偶函数。 由题意知 g(x)=f xx=22xx+ -11·x, 易知函数 g(x)的定义域为(-∞,0)∪(0,+∞), g(-x)=(-x)·22- -xx+ -11=(-x)·11-+22xx=x·22xx-+11=g(x), 所以函数 g(x)为偶函数。
(2)若 f (x)为奇函数,则 f (0)=0,即 a-20+2 1=0,解得 a=1。 此时 f (-x)=1-2-x2+1=1-12+·22xx=-1-2x+2 1=-f (x),故当 a=1 时,函数 f (x) 为奇函数。 (3)由(2)知 f (x)=1-2x+2 1,因为 2x+1>1,所以 0<2x+1 1<1, 所以 0<2x+2 1<2,所以-2<-2x+2 1<0,所以-1<1-2x+2 1<1,即-1<f (x)<1,所以 f (x)的值域为(-1,1)。
【解析】 因为 2x>0,所以 2x+1>1,即|y|>1,又因为曲线|y|=2x+1 与 直线 y=b 没有公共点,所以-1≤b≤1。
【答案】 [-1,1]
方法小结 (1)处理函数图象问题的策略 ①抓住特殊点:指数函数的图象过定点(0,1)。 ②巧用图象变换:函数图象的平移变换(左右平移、上下平移)。 ③利用函数的性质:奇偶性与单调性。
23-x 的图象。
答案 A
[解析] (2)
由题意得[f(x)-2]·[f(x)-a]=0,所以 f(x)=2 或 f(x)=a, 所以|3x-1|+1=2 或|3x-1|+1=a,所以|3x-1|=1 或|3x-1|=a-1, |3x-1|=1 有一个根,所以方程|3x-1|=a-1 有两个不同的实根, 函数 y=|3x-1|的图象如图所示,所以 0<a-1<1,所以 1<a<2.
指数的运算与指数函数

a>1
图 象
定义域
R 值域 (0,+∞) 性 过定点(0,1),即x=0时,y=1
质
在 R上是减函数
在R上是增函数
☆不同底数的图像
a>b>1
0<b<a<1
归纳:在第一象限总是底大图高
讨论 y a (a 0 a 1)的图像
| x|
(1)a>1 (2)0<a<1
1
2
3
n m
④ a ⑤
n
1 * n (n Z ) a
其中均要求
a0 1
a、b 0
☆平方根
如果 x a ,那么 x 叫做 a 的平方根;
2
a0 a
a a
2
a | a |
2
☆立方根 3 如果 x a ,那么 x 叫做 a 的立方根。
0 0
3 3
aR
3
a
3
a a
指数的运算与指数函数 主讲教师 陈利敏
青春是有限的,智慧是无穷的; 趁短暂的青春,学习无穷的智慧
☆指数的运算
知识梳理
分数指数幂
指数的运算
分数指数幂 的性质
☆分数指数幂
规定: a n a m (a 0, m, n N * , 且n 1)
注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化. 规定:
m n
a
m n
1 a
m n
(a 0, m, n N , n 1)
*
注意:0的正分数指数幂等于0; 0的负分数指数幂没意义.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任课教
师
学科授课时间:年月学生姓
名
年级授辅导章节:
辅导内
容
考试大
纲
重点
难点
课堂检测听课及知识掌握情况反馈:
教学需:加快□;保持□;放慢□;增加内容□
课后巩固作业__________ 巩固复习____________________ ; 预习布置_________________
课后学
生
分析总结你学会了那些知识和方法:
你对那些知识和方法还有疑问:
签字教务主任签字:学习管理师:
1、熟练掌握指数运算,
2、熟记指数函数性质.
一、指数幂与指数运算
根式
正数的分数指数幂:
=
=
=
有理数指数幂的运算性质:
例 1、(1)
;(2)
(3)
.(4)
例2、(1)(2013·南昌高一检测)
若10m=2,10n=3,则1
= .
(2)化简
=
(3)若(1-2x
有意义,则x的取值范围是
(4)当
有意义时,化简
-
的结果是
(5)已知a,b是方程x2-6x+4=0的两根,且a>b>0,求
的值 .
二、指数函数与指数函数的性质
形如
定义域为R
例1、下列函数中,哪些是指数函数?
(1)y=10x;(2)y=10x+1;(3)y=-4x;(4)y=xx;(5)y=xα(α是常数).
例2、指数函数y=
b·ax在[b,2]上的最大值与最小值的和为6,则a=
指数函数的图像与性质:
1.函数y=
的定义域是_ ______.
2.函数
的定
义域为;函数
的值域为
3.函数y=ax-2 013+2 013(a>0,且a≠1)的图象恒过定点
4.函数y=a2x+b+1(
a>0,且a≠1)的图象恒过定点(1,2),则b=_______.
5.若0<a<1,b<-1,则函数f(x)=ax+b的图象不经过第象限
6.若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a等于_______.
7.若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x2在[0,+∞)上是增函数,则a= .
8.解关于x的不等式
>
9.设0≤x≤2,y=
-3·2x+5,试求该函数的最值.
10.已知函数f(x)=ax在x∈[-2,2]上恒有f(x)<2,求a的取值范围.
1.
可化为( )[来源:学科网]
A.m-
B.m
C.m
D.-m
2.设y1=40.9,y2=80.48,y3=(
)-1.5,则( )
A.y3>y1>y2
B.y2>y1>y3
C.y1>y2>y3
D.y1>y3>y2
3.若集合M={y|y=2x,x∈R},N=
{y|y=x2,x∈R},则集合M,N的关系为( )
A.M
N B.M?N C.N
M D.M=N
4.当x>0时,指数函数(a-1)x<1恒成立,则实数a的取值范围是( )
A.a>2 B.1<a<2 C.a>
1 D.a∈R
5.若函数f(x)与g(x)=
x的图象关于y轴对称,则满足f(x)>1的x的取值范围是( )[来源:学科网ZXXK] A.R B.(-∞,0) C.(1,+∞) D.(0,+∞)
6.若函数f(x)=3x+3-x与g(x)=3x-
3-x的定义域均为R,则( )
A.f(x)与g(x)均为偶函数
B.f(x)为偶函数,g(x)为奇函数
C.f(x)与g(x)均为奇函数
D.f(x)为奇函数,g(x)为偶函数
7
.(2012·四川高考)函数y=ax-
(a>0,a≠1)的图象可能是( )
8.当x∈[-2,2)时,y=3-x-1的值域是( ).
A.(-
,8] B.[-
,8] C.(
,9) D.[
,9]
9.若函数f(x)=
是R上的增函数,则实数a的取值范围为( )[来源:学科网ZXXK] A.(1,+∞) B.(1,8)
C.(4,8) D.[4,8)
10.方程
的解为
11.若A={x|
<2x<4},B={x|x-1>0},则A∩B= .
12.(2013·济宁高一检测)函数y=(
)x-3x在区间[-1,1]上的最大值为
13.设23-2x<0.53x-4,则x的取值范围是___ ____.
1.若a=
,b=
,c=
,则a、b、c的大小关系是( )
A.a>b>c B.a<b<c C.a<c<b
D.b<c<a
2.若函数y=(2a-3)x是指数函数,则a的取值范围是( )
A.a>
B.a>
,且a≠2 C.a<
D.a≠2
3.不论a取何正实数,函数f(x)=ax+1-2恒过点( )
A.(-1,-1) B.(-1,0 ) C.(0,-1) D.(-1,-3)
4. 已知函数f(x)=
若f[f(0)]=4a,则实数a等于( )
A.
B.
C.2 D.9
5.(2013·黄冈高一检测)已知集合M={y|y=-x2+2,x∈R},集合
N={y|y=2x,0≤x≤2},则(
M)∩N=( )
A.[1,2]
B.(2,4]
C.[1,2)
D.[2,4)
6.(2013·天水高一检测)已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+m(m为常数),则f(-1)的值为( )
A.-3
B.-1
C.1
D.3
7.设f(x)=
则f(x)≥
的解集是_
8.已知指数函数f(x)=ax,且f(3)<f(2),则a的取值范围是________.
9.已知函数f(x)=a-
,若f(x)为奇函数,则a=________.。