指数函数及其性质(一)练习题
指数函数及其性质

(0<a<1)
y
y=ax
(a>1)
图 象
y=1
(0,1) 0 x
(0,1)
y=1
0 x
a>1
0<a<1
a>1
0<a<1
1.图象全在x轴上方,与x轴无限接近。
1.定义域为R,值域为(0,+). 性 2.当x=0时,y=1 3.在R上是增 函数 3.在R上是减 函数
图 象 特 征
2.图象过定点(0,1) 3.自左向右图 3.自左向右图 象逐渐上升 象逐渐下降 4.图象分布在左 下和右上两个 区域内 4.图象分布在左 上和右下两个区 域内
(1), (6), (7)是指数函数。
已知f(x)是指数函数,且其图象
过点(2, 9),求f(0),f(1),f(-3)的值.
2、指数函数的图象和性质: (1) 作出函数y 2 的图象.
x
(2)
1 作出函数y 的图象. 2
x
x
y2
x
…
-3
-2
-1.5
-1
-0.5
0
0.5
x
y
(2)
(1)
( 3)
( 4)
(0,1)
O
x
x
(4)y d 的图象,
x
x
比较a, b, c, d与1的大小关系 .
c d 1 a b.
y
对于多个指 数函数来说, 底数越大的图 象在 y 轴右侧 的部分越高.
(0,1)
O
x
简称:右侧 底大图高.
指数函数的图象和性质
a>1
y
§2.1.2指数函数及其性质(1)

本节课学习了那些知识?
• 指数函数的定义
一 地 函 y = a (a > 0, a ≠1 叫 指 般 , 数 ) 做 数
x
函 , 中是 变 , 数 定 域 数 其 x 自 量 函 的 义 是 R。
指数函数的图象及性质!
归纳
指数函数在底数 0 < a < 1 及 情况下的图象和性质: 情况下的图象和性质:
1 f (− 3) = π = π
−1
应用
2、比较下列各题中两个值的大小: 、比较下列各题中两个值的大小:
(1 )1 . 7
, 2 . 3 1 .6
2 .5
,1 .7 3 ; (2
0 . 8 − 0 .1 , 0 . 8 − 0 .2 ; )
, 0 .9 ;
( 4 )1 . 8 0 . 3 ,, 2 ..3 3 . 1 ;( 4 )1 . 7 3 7 0 9
f(x) = 0.9x
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
-2
-1.5
-1
-0.5 -0.2
0.5
1
1.5
2
2.5
-0.5 -0.2
0.5
1
1.5
2
2.5
3
3.5
4
-0.4
-0.4
方法总结: 方法总结: 对同底数幂大小的比较用的是指数函数的 单调性, 单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值; 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较. 较可以与中间值进行比较.
课时作业5:4.1.2 指数函数的性质与图像(一)

4.1.2 指数函数的性质与图像(一)1.在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x 的图像之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称答案 A2.若函数y =(1-2a )x 是实数集R 上的增函数,则实数a 的取值范围为() A.⎝⎛⎭⎫12,+∞ B .(-∞,0)C.⎝⎛⎭⎫-∞,12 D.⎝⎛⎭⎫-12,12答案 B解析 ∵y =(1-2a )x 是R 上的增函数,则1-2a >1,∴a <0.3.函数y =a x +1(a >0且a ≠1)的图像必经过点( )A .(0,1)B .(1,0)C .(2,1)D .(0,2)答案 D4.若函数y =(m 2-5m +5)m x 是指数函数,则有( )A .m =1或m =4B .m =1C .m =4D .m >0或m ≠1答案 C解析 由题意可得⎩⎪⎨⎪⎧ m 2-5m +5=1,m >0且m ≠1,∴m =4. 5.函数f (x )=a x 与g (x )=-x +a 的图像大致是( )答案 A6.函数y =32-2x 的定义域是________.答案 (-∞,5]解析 由32-2x ≥0,得2x ≤25,∴x ≤5.7.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥3,f (x +1),x <3,则f (x )的值域为________. 答案 [8,+∞)解析 当x ≥3时,2x ≥23=8;当x <3时,皆可通过有限次加1转化为第一类.8.已知f (x )=a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为6,则a =________. 答案 2解析 ∵f (x )=a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为6,∴a +a 2=6,即a 2+a -6=0,∴a =2或a =-3(舍).9.求下列函数的定义域和值域.(1)y =13x -; (2)y =5-x -1.解 (1)由1-x ≥0,得x ≤1.∴定义域为(-∞,1].设t =1-x ≥0,则3t ≥30=1,∴值域为[1,+∞).(2)定义域为R ,∵5-x >0,∴5-x -1>-1,∴值域为(-1,+∞).10.已知x ∈[-3,2],求f (x )=14x -12x +1的最小值与最大值. 解 f (x )=14x -12x +1=4-x -2-x +1=2-2x -2-x +1=⎝⎛⎭⎫2-x -122+34,∵x ∈[-3,2],∴14≤2-x ≤8,则当2-x =12,即x =1时,f (x )有最小值34, 当2-x =8,即x =-3时,f (x )有最大值57.11.已知函数f (x )=(a 2-1)x ,若x >0时总有f (x )>1,则实数a 的取值范围是( )A .1<|a |<2B .|a |<2C .|a |>1D .|a |> 2答案 D解析 由题意知a 2-1>1,解得a >2或a <-2,故选D.12.函数y =a x -a (a >0且a ≠1)的大致图像可能是( )答案 C解析 如果函数的图像是A ,那么由1-a =1,得a =0,这与a >0且a ≠1相矛盾,故A 不可能;如果函数的图像是B ,那么由a 1-a <0,得0<0,这是不可能的,故B 不可能;如果函数的图像是C ,那么由0<1-a <1,得0<a <1,且a 1-a =0,故C 可能;如果函数的图像是D ,那么由a 1-a <0,得0<0,这是不可能的,故D 不可能.13.若函数y =a x +b -1(a >0,且a ≠1)的图像经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0答案 C解析 函数y =a x +b -1(a >0,且a ≠1)的图像是由函数y =a x 的图像经过向上或向下平移而得到的,因其图像不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图像向下平移大于1个单位长度,即b -1<-1,所以b <0.14.若函数y =⎝⎛⎭⎫12|x |+m 与x 轴有公共点,则m 的取值范围是________.答案 [-1,0)解析 y =⎝⎛⎭⎫12|x |的图像如图,若y =⎝⎛⎭⎫12|x |+m 的图像与x 轴有公共点,则y =⎝⎛⎭⎫12|x |的图像必须下移|m |个单位长度且0<|m |≤1,且m <0,所以-1≤m <0.15.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图像为( )答案 C解析 令x =1,则①y =m ,②y =n ,∵m <n ,∴C 对.16.已知函数y =⎝⎛⎭⎫13|x +1|.(1)画出函数的图像(简图);(2)由图像指出函数的单调区间;(3)由图像指出当x 取何值时函数有最值,并求出最值.解 (1)方法一 y =⎝⎛⎭⎫13|x +1|=⎩⎪⎨⎪⎧ ⎝⎛⎭⎫13x +1,x ≥-1,3x +1,x <-1.其图像由两部分组成: 一部分:y =⎝⎛⎭⎫13x (x ≥0)的图像――――――――――→向左平移1个单位长度y =⎝⎛⎭⎫13x +1(x ≥-1)的图像; 另一部分:y =3x (x <0)的图像――――――――――→向左平移1个单位长度y =3x +1(x <-1)的图像. 得到的函数图像如实线部分所示.方法二 ①可知函数y =⎝⎛⎭⎫13|x |是偶函数,其图像关于y 轴对称,故先作出y =⎝⎛⎭⎫13x (x ≥0)的图像,当x <0时,其图像与y =⎝⎛⎭⎫13x (x ≥0)的图像关于y 轴对称,从而得出y =⎝⎛⎭⎫13|x |的图像. ②将y =⎝⎛⎭⎫13|x |的图像向左平移1个单位长度,即可得y =⎝⎛⎭⎫13|x +1|的图像,如图所示.(2)由图像知函数的单调递增区间是(-∞,-1],单调递减区间是(-1,+∞).(3)由图像知当x =-1时,函数有最大值1,无最小值.。
指数函数的性质及常考题型(含解析)

【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
2.1.2指数函数及其性质(1)

1.图像向左、向右是无限延伸的。 (0,1)
2.图像都在x轴的上方。 3.都过定点(0,1)。
0
x
y a x (a 0且a 1) 的图象和特征:
a>1
图
6
5
象 4
3
2
11
-4
-2
0
2
4
6
-1
1.图象在x轴上方
特 2.从左到右上升 征 3.过定点 (0,1)
4、a越大,向上越靠近y轴
0<a<1
2.1.2指数函数及其性质
第一课时
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
质
4.单调性:
在R上是增函数
单调性: 在R上是减函数
对称性: y=ax和y=a-x关于y轴对称
例3、 如图为指数函数:
(1) y ax (2) y bx (3) y cx (4) y d x的图象,
y
(2) (3)
(1)
(4)
比较 a, b, c, d 与1的大小关系.
O
x
c d 1 a b
例5、已知指数函数 f (x) ax (a 0且a 1) 的图像经过 点(3,π)求 f(0), f(1), f(-3)的值。
解:因为 f (x) a x 的图像过点(3, ),所以
指数函数的练习题

指数函数的练习题指数函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握指数函数的相关概念和性质。
下面,我将给大家提供一些指数函数的练习题,希望能够对大家的学习有所帮助。
练习题一:简单指数函数计算1. 计算 $2^3$ 和 $(-3)^2$ 的值。
2. 计算 $10^{-2}$ 和 $\left(\frac{1}{2}\right)^{-3}$ 的值。
练习题二:指数函数的性质1. 如果 $a > 1$,那么 $a^x$ 是否是递增函数?为什么?2. 如果 $0 < a < 1$,那么 $a^x$ 是否是递增函数?为什么?3. 如果 $a > 1$,那么 $a^x$ 是否有上界?为什么?练习题三:指数函数的图像1. 画出函数 $y = 2^x$ 和 $y = \left(\frac{1}{2}\right)^x$ 的图像。
2. 画出函数 $y = 3^x$ 和 $y = \left(\frac{1}{3}\right)^x$ 的图像。
练习题四:指数函数的应用1. 假设某种细菌的数量每小时增加50%,现在有1000个细菌,经过多少小时后细菌的数量会达到5000个?2. 一笔投资每年以5%的利率复利计算,如果初始投资为10000元,经过多少年后投资会翻倍?练习题五:指数函数的方程1. 解方程 $2^x = 8$。
2. 解方程 $3^{2x-1} = \frac{1}{9}$。
通过以上的练习题,我们可以加深对指数函数的理解和运用。
在计算指数函数的值时,我们需要注意底数的正负以及指数的大小。
指数函数的性质也是我们需要掌握的重要内容,它们对于理解函数的增减性和图像的变化有着重要的影响。
通过绘制指数函数的图像,我们可以更直观地观察函数的特点和变化趋势。
指数函数在实际生活中也有广泛的应用。
在金融领域中,复利计算常常使用指数函数的概念。
课时作业4:4.1.2 指数函数的性质与图像(一)

4.1.2 指数函数的性质与图像(一)一、选择题1.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x ;④y =⎝⎛⎭⎫122x -1. A .0 B .1 C .3 D .42.已知f (x )=3x -b (b 为常数)的图像经过点(2,1),则f (4)的值为( )A .3B .6C .9D .813.当x ∈[-1,1]时,函数f (x )=3x -2的值域是( )A.⎣⎡⎦⎤1,53 B .[-1,1]C.⎣⎡⎦⎤-53,1 D .[0,1]4.在同一平面直角坐标系中,函数f (x )=ax 与g (x )=a x 的图像可能是()二、填空题5.函数f (x )=1-e x 的值域为________.6.若指数函数y =f (x )的图像经过点⎝⎛⎭⎫-2,116,则f ⎝⎛⎭⎫-32=________.7.若关于x 的方程2x -a +1=0有负根,则a 的取值范围是________.三、解答题8.若函数y =(a 2-3a +3)·a x 是指数函数,求a 的值.9.求下列函数的定义域和值域:(1)y =21x -1;(2)y =⎝⎛⎭⎫13222x -.10.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x .(1)在同一坐标系中作出f (x ),g (x )的图像;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?【参考答案】一、选择题1.【解析】由指数函数的定义可判定,只有②正确.【答案】B2.【解析】由f (x )过定点(2,1)可知b =2,所以f (x )=3x -2,f (4)=9.可知C 正确.【答案】C3.【解析】因为指数函数y =3x 在区间[-1,1]上是增函数,所以3-1≤3x ≤31,于是3-1-2≤3x-2≤31-2,即-53≤f (x )≤1.故选C. 【答案】C4.【解析】需要对a 讨论:①当a >1时,f (x )=ax 过原点且斜率大于1,g (x )=a x 是递增的;②当0<a <1时,f (x )=ax 过原点且斜率小于1,g (x )=a x 是减函数,显然B 正确.【答案】B二、填空题5.【解析】由1-e x ≥0得e x ≤1,故函数f (x )的定义域为{x |x ≤0},所以0<e x ≤1,-1≤-e x <0,0≤1-e x <1,函数f (x )的值域为[0,1).【答案】[0,1)6.【解析】设f (x )=a x (a >0且a ≠1).因为f (x )过点⎝⎛⎭⎫-2,116,所以116=a -2, 所以a =4,所以f (x )=4x , 所以f ⎝⎛⎭⎫-32=432-=18. 【答案】18 7.【解析】因为2x =a -1有负根,所以x <0,所以0<2x <1.所以0<a -1<1,所以1<a <2.【答案】(1,2)三、解答题8.【解】由指数函数的定义知⎩⎪⎨⎪⎧a 2-3a +3=1,①a >0且a ≠1,② 由①得a =1或2,结合②得a =2.9.【解】(1)要使y =21x -1有意义,需x ≠0,则21x ≠1; 故21x -1>-1且21x -1≠0, 故函数y =21x -1的定义域为{x |x ≠0},函数的值域为(-1,0)∪(0,+∞).(2)函数y =⎝⎛⎭⎫13222x -的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2. 故0<⎝⎛⎭⎫13222x -≤9,所以函数y =⎝⎛⎭⎫13222x -的值域为(0,9]. 10.【解】(1)函数f (x )与g (x )的图像如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m =3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等, 即当指数函数的底数互为倒数时,它们的图像关于y 轴对称.。
指数函数及其性质(含知识点、例题、练习、测试)

指数函数及其性质 知识点一 指数函数及图像性质1.指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R ,a 是底数.2. 指数函数的图象和性质:作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =图像性质总结 底数 a >1 0<a <1图象性质 函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数 函数在定义域R 上为减函数题型一 指数函数求值【例1】已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.题型二 比较大小【例2】比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1题型三 指数函数性质【例3】求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =【过关练习】1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .2、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.思考探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域问题?知识点二 指数函数应用1. 指数函数的应用模型(应用题)2. 指数形式的函数定义域、值域题型 函数综合【例1】 2017年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍? → 变式:多少年后产值能达到120亿?【例2】指数函数与函数性质综合1、已知函数[]2,1,2329∈+•-=x y xx ,求这个函数的值域;2、求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.【过关练习】1、 一片树林中现有木材30000m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 32. ① 求函数y =的定义域和值域.② 求下列函数的定义域、值域:21x y =+; y =110.4x y -=.【补救练习】 1、已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )2、比较下列各组数的大小: 13222()0.45--与() ; 0.760.75333-()与().【巩固练习】1、函数f (x )=2|x -1|的图象是( )2、下列函数中值域为正实数的是( )A .y =-5xB .y =⎝⎛⎭⎫131-x C .y =⎝⎛⎭⎫12x -1 D .y =1-2x 【拔高练习】1、当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)2、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.【补救练习】 B ><【巩固练习】B B 【拔高练习】 C 24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1指数函数及其性质(一)
一、选择题
1.函数f (x )=)1(log 2
1-x 的定义域是( )
A .(1,+∞)
B .(2,+∞)
C .(-∞,2)
D .]21(,
解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,
所以⎪⎩⎪
⎨⎧≥0)1(log 0
12
1
->-x x 解得1<x ≤2. 答案:D
2.函数y =2
1log (x 2-3x +2)的单调递减区间是( )
A .(-∞,1)
B .(2,+∞)
C .(-∞,
23
)
D .(
2
3
,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2
1log (x 2-3x +2)在(2,+∞)上单调递减.
答案:B
3.若2lg (x -2y )=lg x +lg y ,则x
y
的值为( ) A .4
B .1或41
C .1或4
D .4
1
错解:由2lg (x -2y )=lg x +lg y ,得(x -2y )2=xy ,解得x =4y 或x =y ,则有
x
y =
4
1
或y x =1. 答案:选B
正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y .
答案:D
4.若定义在区间(-1,0)内的函数f (x )=a 2log (x +1)满足f (x )>0,则a 的取值范围为( ) A .(0,2
1
) B .(0,
2
1
)
C .(
2
1
,+∞)
D .(0,+∞)
解析:因为x ∈(-1,0),所以x +1∈(0,1).当f (x )>0时,根据图象只有0<2a <l ,解得0<a <2
1
(根据本节思维过程中第四条提到的性质). 答案:A 5.函数y =lg (x
-12
-1)的图象关于( ) A .y 轴对称 B .x 轴对称
C .原点对称
D .直线y =x 对称
解析:y =lg (
x -12-1)=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =x
x -+11lg 的函数都为奇函数. 答案:C 二、填空题
已知y =a log (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是__________. 解析:a >0且a ≠1⇒μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0⇒a <3
2
(0<x <1)⇒a <2,所以a ∈(1,2). 答案:a ∈(1,2)
7.函数f (x )的图象与g (x )=(3
1)x
的图象关于直线y =x 对称,则f (2x -x 2)的单调递减区间为______.
解析:因为f (x )与g (x )互为反函数,所以f (x )=3
1log x
则f (2x -x 2)=3
1log (2x -x 2),令μ(x )=2x -x 2>0,解得0<x <2.
μ(x )=2x -x 2在(0,1)上单调递增,则f [μ(x )
]在(0,1)上单调递减;
μ(x )=2x -x 2在(1,2)上单调递减,则f [μ(x )
]在[1,2)上单调递增.
所以f (2x -x 2)的单调递减区间为(0,1). 答案:(0,1)
8.已知定义域为R 的偶函数f (x )在[0,+∞]上是增函数,且f (2
1
)=0, 则不等式f (l og 4x )的解集是______.
解析:因为f (x )是偶函数,所以f (-21)=f (2
1
)=0.又f (x )在[0,+∞]上是增函数,所以f (x )在(-∞,0)上是减函数.所以f (l og 4x )>0⇒l og 4x >2
1
或l og 4x
<-2
1.
解得x >2或0<x <21
.
答案:x >2或0<x <2
1
三、解答题
9.求函数y =3
1log (x 2-5x +4)的定义域、值域和单调区间.
解:由μ(x )=x 2-5x +4>0,解得x >4或x <1,所以x ∈(-∞,1)∪(4,+∞),当x ∈(-∞,1)∪(4,+∞),{μ|μ=x 2-5x +4}=R +
,所以函数的值域是R
+
.因为函数y =3
1log (x 2-5x +4)是由y =3
1
log μ(x )与μ(x )=x 2-5x +4复合而成,
函数y =3
1
log μ(x )在其定义域上是单调递减的,函数μ(x )=x 2-5x +4在(-∞,2
5
)
上为减函数,在[
25,+∞]上为增函数.考虑到函数的定义域及复合函数单调性,y =3
1log (x 2-5x +4)的增区间是定义域内使y =3
1
log μ(x )为减函数、μ(x )=x 2-5x +4也
为减函数的区间,即(-∞,1);y =3
1log (x 2-5x +4)的减区间是定义域内使y =3
1
log μ
(x )为减函数、μ(x )=x 2-5x +4为增函数的区间,即(4,+∞). 10.设函数f (x )=
532+x +x
x
2323lg +-, (1)求函数f (x )的定义域;
(2)判断函数f (x )的单调性,并给出证明;
(3)已知函数f (x )的反函数f -
1(x ),问函数y =f -
1(x )的图象与x 轴有交点吗?
若有,求出交点坐标;若无交点,说明理由. 解:(1)由3x +5≠0且x x 2323+->0,解得x ≠-35且-23<x <23.取交集得-2
3
<x <
2
3
. (2)令 (x )=3x +5,随着x 增大,函数值减小,所以在定义域内是减函数;
x x 2323+-=-1+x
236
+随着x 增大,函数值减小,所以在定义域内是减函数. 又y =lg x 在定义域内是增函数,根据复合单调性可知,y =x
x
2323lg +-是减函数,所以f
(x )=532+x +x
x
2323lg +-是减函数.
(3)因为直接求f (x )的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解.
设函数f (x )的反函数f -
1(x )与工轴的交点为(x 0,0).根据函数与反函数之间定义
域与值域的关系可知,f (x )与y 轴的交点是(0,x 0),将(0,x 0)代入f (x ),解得x 0=
52.所以函数y =f -
1(x )的图象与x 轴有交点,交点为(5
2,0)。