润滑脂流变性研究

润滑脂流变性研究
润滑脂流变性研究

润滑脂流变性研究

前言

目前,润滑脂在各个领域中都得到广泛应用,与润滑油相比,润滑脂在对润滑部件的结构和维护方面有很多优点。但是,由于粘弹性的关系,润滑脂的应用又有很多约束性。例如,在汽车润滑中,润滑脂必须在很宽的温度范围内都具有优良的性能,如汽车厂家会要求润滑脂能够在-40℃时正常使用。所以,急需一种仪器或方法能够测试很宽温度范围内的粘弹性。本文介绍了一种能够控制温度的流变仪,并介绍了一些适当的测试方法,希望能够对这一领域的研究者提供参考。

样品说明

本文中的样品是使用三种不同的矿物油基的润滑脂,在美国国家润滑脂协会分级标准中分别为:NLGI 0、1和2。

仪器和测试方法

使用配有Peltier控温系统(P-PTD200/56+H-PTD200)的MCR301流变仪(如图1中所示),Peltier使用FP50-MW恒温循环器进行冷却,其温度设定为-20℃,测试夹具为PP25 (25mm平板),间隙为1mm,测试使用直接应变振荡模式(DSO)。

图1 MCR流变仪,配有带控温罩的Peltier系统

使用附加的Peltier控温罩可以确保样品在整个温度范围内温度分布的均匀性,消除温度梯度,样品内部温度梯度是一个非常关键测试条件,温度梯度会导致错误的测试结果,而如果只用下板进行控温,那么将会形成较大的温度梯度。

在测试温度下设定零间隙,在25℃时装样;以10K/min的冷却速度降温到-40℃,冷却速度对样品在低温下的结构有非常重要的影响,因此可以通过改变降温速度测试不同条件对样品结构的影响。达到-40℃以后,样品稳定10分钟,为了防止结冰,需要通入氮气。

以角频率10rad/s进行振荡应变扫描,应变范围0.001%至100%;用应变扫描可以研究粘弹性、确定表观屈服应力等。

测试结果

图2中显示了三个样品在25℃时的应变扫描结果,为了显示优秀的重复性,每个样品用相同的条件测试了两次。图中所示的储能模量G’代表了弹性部分,损耗模量G”代表了粘性部分。

图2 应变扫描γ = 0.001 % ~ 100 %

测试温度:25℃;每个样品测试两次,其中NLGI 0(蓝色)的值最低,

NLGI 1(红色)的值居中,NLGI 2(黑色)的值最高。

由图中可以看出,三个样品在小应变时G’都大于G”,表明样品具有更偏于固体的结构特征;与所预期的相同,NLGI 0、NLGI 1 和NLGI 2 三个样品的两个模量分别都依次增大。

图3中显示了三个样品在-40℃时的测试结果,同样每个样品也是测试了两次;从结果中可以看出,总体流变特征和样品的排列次序与25℃时相同,NLGI 0的模量最低,NLGI 2的模量最高。然而,-40℃时模量的绝对值明显增大。在这两个温度下,模量都是随应变的增大而减小。通常我们把储能模量G’开始减小的点定义为线性粘弹区(LVE)的终点。

在线性粘弹区内,G’和G”可以表征出润滑脂的结构强度和粘稠度;有时损耗系数tanδ=G”/G’

可以作为性能描述的附加值,损耗系数小时表明样品脆性大,损耗系数大时表明样品更容易铺展。越高NLGI的润滑脂,其G’更高,大多数情况下G”也更高,但损耗系数tanδ会减小。

线性粘弹区可以确定样品在内部结构被破坏之前所能承受的最大形变,其中,增稠剂是影响材料结构的主要因素。线性粘弹区的极限越大,说明样品内部结构越稳定,能够承受更大的形变。NLGI 级别越高润滑脂脆性越大,相应的线性粘弹区越小。

为了评价润滑脂在实际使用时的性能,观察在应力与模量的关系是非常有用的;把图2和图3中的数据显示为剪切应力为横坐标,再放到同一个图中显示出来,结果如图4所示。为了使数据更清晰,每个样品只显示了一次测量的数据。可以看出,25℃时每个样品模量开始降低时的应力值都小于-40℃时的应力值;在两个温度下,NLGI 0样品的应力值最低,NLGI2样品的应力值最高。根据剪切应力,这个点就被认为是表观屈服点,在更高的剪切应力时,G’和G”的曲线出现了交点,在比交点更大的应变区内,粘性特征大于弹性特征,G”>G’,这表明样品成液态,表现出流动行为。因此,这个交点又被称作流动点。在流动点的应力值明显大于在线性粘弹区末端的应力值。

流变仪软件能够自动确定这两个点,屈服点和流动点。在汽车中的实际使用时,在开始流动时的应力值是润滑脂一个非常重要的特性。图4中,除了G’和G”曲线外,使用给定的分析方法,流动点(G’和G”交点)的应力值也被显示了出来。在此结果中,流动点的应力值从NLGI 0在25℃时的120Pa到NLGI 2在-40℃时的9350Pa顺序排列。

图3 应变扫描γ = 0.001 % ~ 100 %

测试温度:-40℃;每个样品测试两次,其中NLGI 0(蓝色)的值最低,NLGI 1(红色)的值居中,NLGI 2(黑色)的值最高。

图4 应变扫描γ = 0.001 % ~ 100 %

测试温度:25℃(实心符号)和-40℃(空心符号);数据来源于图2和图3的剪切应力曲线,大的圆点标示出了三个样品在两个温度下的流动点。

结论

MCR301流变仪加上Peltier温度控制系统P-PTD200/56和控温罩H-PTD200是测试润滑脂性能的一个理想解决方案。他能够研究润滑脂在很宽的温度范围内(-40 ~200℃)的粘弹性等流变性能,Peltier控温罩的使用确保了整个样品中的温度分布。相对于使用液氮降温的系统,Peltier系统使用简单、价格低、运行成本小。振荡幅度扫描测试非常使用于研究润滑脂粘弹性和稠度。测试结果显示了非常优秀的重复性,在流动点的储能和损耗模量以及应力值等非常有价值的信息都可以得到。

护肤品的肤感与流变性关系的研究

护肤品的肤感与流变性关系的研究 工104班(10101785)张瑜 摘要:当今,化妆品已成为人民生活的必需品。随着精细化工、生命科学、分子生物学、高新技术的迅速发展,化妆品的科技内涵也随之提升,产品各项特性已愈来愈受到社会民众与各国有关管理部门的关注。化妆品具有安全性、稳定性、功效性和使用性。其中使用性是评价化妆品好坏的重要性质。化妆品的感观评价和流变特性是约束其使用性的主客观评价方法。贯穿在化妆品的配方、生产、运输和使用过程中。 本文简要介绍了化妆品流变学的定义,系统综述了流变学在判断化妆品流体类型、化妆品生产、稳定性考察及肤感评价等方面的应用,重点阐述了流变学在表面活性剂、乳状液、凝胶等化妆品体系中的研究进展,指出了在未来开发化妆品过程中,通过流变学将微观结构和产品特性联系在一起的发展方向。 关键词:护肤品,肤感,流变性 1 研究背景 1.1 介绍 流变一词来源于希腊语“hteo”—意为流动。流变学是研究物质在力的作用下变形和流动的科学,是研究材料在应力、应变、温度、湿度、辐射等条件下与时间因素有关的变形和流动规律的学科,属于力学的一个分支,它的主要研究对象是非牛顿流体。 化妆品流变学是化妆品、化学、流体力学间的交叉学科,主要研究的是化妆品受外力和形变作用的结构。由于化妆品物料的流变特性与食品的质地稳定性和加工工艺设计等有着重要关系,所以通过对化妆品流变特性的研究,可以了解化妆品的组成、内部结构和分子形态等,能为产品配方、加工工艺、设备选型及质量检测等提供方便和依据。 感官评价是人们判断化妆品品质好坏的重要手段,而流变特性可以用来客观地确定当产品被应用到皮肤的感觉,这可以帮助缩短研究和开发时间,为化妆品开发提供便利。因此,建立起流变特性与感官评价之间的相关性,建立起主观与客观之间的联系,可以对化妆品的使用感觉和效果做出正确评价。 2 文献综述 王硕在《化妆品感官评价与流变学研究进展》一文中提出化妆品感官评价是人们判断化妆品品质好坏的重要手段。感官评价是通过视觉、嗅觉、触觉、味觉和听觉所引起

润滑油脂的的特性概述

润滑脂、防冻液 一、什么是润滑脂? 润滑脂是将稠化剂分散在液体润滑剂中所组成的一种稳定的固体或半固体产品。在日常生产中人们习惯于把润滑脂叫成“黄油”。 润滑脂主要是由稠化剂、液体润滑油、添加剂和填料组成。 二、稠化剂的作用是什么?有哪些种类? 稠化剂的作用是在基础油中分散和形成结构骨架,使基础油吸附并固定在结构骨架中,从而形成固体或半固体关的润滑脂。 稠化剂的种类主要有皂基稠化剂和非皂基稠化剂。 皂基稠化剂可分为三类:单皂基—以单以金属皂作为稠化剂而制成的脂,如钙基脂、钠基脂。-混合皂基—由两种或两种以上的单一金属皂同时作为稠化剂混合而制成的脂,如钙—钠基脂。?复合皂基—皂结晶或皂纤维是由两种或更的化合物共结晶而制成的,复合引起润滑脂特性改变,并以滴点升高为标志,如复合锂、复合铝基脂。 非皂基稠化剂有:烃基、无机类、有机类 三、如何判断皂基脂与非皂基脂? 通过测定是否有明确的滴点即可区分。皂基脂有滴点,有的还有优良的抗辐射性、抗化学介质等特性。四、润滑脂的添加剂的类型有哪些?润滑油中添加剂是否都可以用于润滑月脂? 润滑脂的添加剂分为两大类:一类是物理性能改善剂,如结构改进剂(醇、水、甘油等);另一类是化学性能改善剂,如抗磨剂、防锈剂等。 在润滑油添加剂中,可能对润滑脂胶体结构破坏较大的添加剂不能用在润滑脂中;有的添加剂虽油溶性差,在润滑油中使用受到限制,但在润滑脂中感受性好,故可用于润滑脂中。 五、什么是填料?其作用如何? 填料是为了增加润滑脂中的某些特殊性能而添加的固体填充物,大多数是一些有润滑作用和增稠效果的无机物粉末。大部分填料本身可作为固体润滑剂用,加入脂中可提高脂的润滑能力,在脂的润滑膜受短暂冲击负荷或高热作用下,它们可起补强作用。常用填料有:石墨、铝粉、二硫化钼、铜粉等。 六、润滑脂的主要性能有哪些? ①流变学性能②高温性能③轴承性能④润滑性能⑤防护性能⑥低温性能。 七、润滑脂的流变学性能是如何测得的? 流变学是研究物质在受到外力作用后变形或流动的科学。润滑脂的流变学性能取决于它的组成和结构,同时也与剪切速率、温度有关,润滑脂的流动性能主要通过脂的触变性、相似粘度、强度极限等性能来评定。 八、什么是润滑脂的触变性和强度极限? 润脂受到剪切作用,在一定剪速下,随着剪切时间的增加,稠度下降,脂变稀;当剪切停止时,结构骨架又逐渐恢复,脂又变稠,这种由稠变稀,由稀变稠的现象称为触变性。其值大小取决于稠化剂种类、浓度和分散状态,而与基础油粘度并无直接关系。润滑脂有轻微的触变对使用是有益的。 强度极限是表示使润滑脂开始流动所需最小的剪应力。 由于脂是具有不定期的强度极限,就不会受地心引力而改变其形态自动流动,即使在密封不严的摩擦部件中也不会流失,在机械工作时能抵抗住离心的作用,不致从零件表面被甩出。 润滑脂强度极限是温度的函数,温度越高,脂的强度极限变小,温度降低,脂的强度极限变大。脂的强度极限,取决于稠化剂的种类和含量,与工艺也有关。 九、润滑脂稠度分级、牌号分类的依据是什么? 稠度是一个与脂在润滑部位保持能力和密封性能以及脂的输送和加注有关的重要指标,其大小按针入度划分。 目前国际上通用的稠度等级是按照美国润滑脂协会(NLGI)的稠度等级划分的。将润滑脂的稠度分为九个等级:000、00、0、1、2、3、4、5、6。稠度等级用锥入度度量。

第六章 钻井液的流变性

第六章 钻井液的流变性 钻井液的流变性是钻井液的一项最基本性能,它是指在外力作用下,钻井液发生流动变形的特性。该特性通常用钻井液的流变曲线、表观粘度、塑性粘度、动切力、静切力等流变参数来进行描述的。它在解决1、岩屑携带,保证井底和井眼清洁;2、悬浮岩屑和加重材料;3、保持井眼规则和保障井下安全;4、提高机械钻速等钻井问题时起着十分重要的作用。另外,钻井液的某些流变参数还直接用于钻井环空水力学的有关计算。对钻井液流变性的深入研究有利于对油气井钻井液流变参数的优化设计和合理调控。 一、流体流变性的概念 1、流体流动的特点 流体流动实际上是流体随时间连续变形的过程。液体的流动变形是因为液体受到剪切作用引起的剪切变形。既液体在大小相等、方向相反、而作用线相距很近的两个力作用下,液体内部指点发生相对错动。以河水流动的速度分布为例,可以看到,越靠近河岸,流速越小,河中心处流速最大。水在管道中流速分布与河水相似,管道中心流速最大,靠近管壁处速度为零。可以想象,如果把管道内流动的水沿着管道半径的方向由内向外分成若干层,每一层流速是不同的。 如图6—1所示。液流中各层的流速不同这个现象,通常用剪切速率(或称速度梯度)这个物理量来描述。 2、剪切速率和剪切应力 如前所述,液体在管内流动时,在垂直于流速方向上,由内向外流速逐渐减小。若液体液层之间的距离为dx ,各液层的速度差为dv ,则垂直于流速方向不同液层流速的变化可以表示为dv/dx ,那么dv/dx 叫速度梯度即剪切速率。其物理意义是在垂 直于流速方向上,单位距离流速的增量。物理单位为S -1 钻井液在循环系统的不同位 置剪切速率值如下: 沉砂池: 10 —20 S -1 环形空间: 50 —250 S -1 图6-1在圆形管道中水的流速分布 a —流速分布示意图b —流速分布曲线

润滑脂流变性

润滑脂流变性 润滑脂是在润滑油中加入稠化剂所制成的半固体胶状物质。常用的稠化剂是脂肪酸金属皂,这种皂纤维构成网状框架,期间储存润滑油。由于润滑脂是纤维组成的三维框架结构,它不能作层流流动,在润滑过程中呈现出复杂的宏观力学特性,妈表现为具有时间效应的黏塑性流体。图表示润滑脂的流变特性。其主要特点可归纳为: 图润滑脂流变特性 (1)通常润滑脂的黏度随剪应变率的增加而降低,因而剪应力与剪应变率呈现非线性关系。 (2)如图所示,润滑脂具有屈服剪应力s τ,只有当施加的剪应力s ττ>时,润滑脂才产生流动而表现出流体性质。当s ττ≤时,润滑脂表现为固体性质,并可具有一定的弹性变形。由于润滑脂具有屈服剪应力特性,使得润滑膜中剪应力s ττ≤的区域将出现无剪切流动层。在该流动层中,与流动速度垂直方向上的各点将具有相同的流速,即形成整体。 (3)润滑脂具有触变性。当润滑脂在一定的剪应变率下流动时,随着剪切时间的延长,剪应力逐渐减小,即黏度随着时间而降低。而当剪切停止以后,黏度将部分地恢复。由此可见,润滑脂状态是处于动态的变化过程,而所谓的稳态润滑只能是相对稳定状态。 描述润滑脂流变特性的本构方程目前主要采用以下三种: (1)Oswald 模型 n τφγ= (2)Bingham 模型 s ττφγ=+ (3)Herschel-Bulkley 模型 n s ττφγ=+ 式中,n 为流变指数;φ为塑性黏度。 实践表明,Herschel-Bulkley 模型比较符合实验结果,在中低速范围时准确度更高。此外,当1n =时,它转变为Bingham 模型;而当0s τ=时,为Oswald 模型。因此,Herschel-Bulkley 模型具有普遍性。 严格地说,流变参数s τ、φ和n 都应是温度和压力的函数。对于等温润滑问题可以不考虑温度的影响。而流变参数与压力的关系通常按简化处理,即认为流变指数n 与压力p 无关,而屈服剪应力s τ和塑性黏度φ随压力p 按指数关系变化。故

最新《原油流变学》(复习资料)

第一章 1.流变学(Rheology)是研究物质变形与流动的科学。实际物质在外力作用下怎样变形与流动,这是物质本身固有的性质,可以称其为物质的流变性(即物质在外力作用下变形与流动的性质)。流变学就是研究物质流变性的科学。 2.流变学研究的是纯弹性固体和牛顿流体状态之间所有物质的变形与流动问题。 3.流变学更注重不同物质的力学性质与其内部结构之间的关系 4.流变学中物质所受到的力用应力或应力张量表示 5.流变学中用应变或应变速率表示物质的运动状态即变形或流动。 6.流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。 7.物质状态的变化称为变形,而物质连续无限地变形就是流动。 8.流变学中有三种基本变形:简单拉伸、简单剪切和体积压缩与膨胀 9.反映材料宏观性质的数字模型称为本构方程,亦称为流变状态方程和流变方程 10.对一些简单的流变性制的描述也可以用曲线形式表示,如剪切应力与剪切速率关系曲线,粘度随剪切速率变化曲线等,并称之为流变曲线。 第二章 1.散体系是指将物质(固态、液态或气态)分裂成或大或小的粒子,并将其分布在某种介质(固态、液态或气态)之中所形成的体系。 2.分散体系可以是均匀的也可以是非均匀的系统。均匀分散体系是由一相所组成的单相体系,而非均匀分散体系是指由两相或两相以上所组成的多相体系。 3.非均匀分散体系必须具备2个条件:①在体系内各单位空间所含物质的性质不同;②存在着分界的物理界面。 4. 对非均匀分散体系,被分散的一相称为分散相或内相,把分散相分散于其中的一相称为分散介质,亦称外相或连续相。 5.尽管非牛顿流体在微观上往往是非均匀的多相分散体系,或非均匀的多相混合流体,但在用连续介质理论或宏观方法研究其流变性问题时,一般可以忽略这种微观的非均匀性,而认为体系为一种均匀或假均匀分散体系。 6.对非牛顿流体,没有恒定的粘度概念,不同的剪切速率下有不同的表观粘度,这是非牛顿流体的一大特点。 7、一受力就有流动,但剪切应力与剪切速率的不成比例,随着剪切速率的增大,剪切应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性(shear thickening)。因此,膨肿性流体具有剪切增稠性。随着剪切速率的增加,表观

润滑脂流变性研究

润滑脂流变性研究 前言 目前,润滑脂在各个领域中都得到广泛应用,与润滑油相比,润滑脂在对润滑部件的结构和维护方面有很多优点。但是,由于粘弹性的关系,润滑脂的应用又有很多约束性。例如,在汽车润滑中,润滑脂必须在很宽的温度范围内都具有优良的性能,如汽车厂家会要求润滑脂能够在-40℃时正常使用。所以,急需一种仪器或方法能够测试很宽温度范围内的粘弹性。本文介绍了一种能够控制温度的流变仪,并介绍了一些适当的测试方法,希望能够对这一领域的研究者提供参考。 样品说明 本文中的样品是使用三种不同的矿物油基的润滑脂,在美国国家润滑脂协会分级标准中分别为:NLGI 0、1和2。 仪器和测试方法 使用配有Peltier控温系统(P-PTD200/56+H-PTD200)的MCR301流变仪(如图1中所示),Peltier使用FP50-MW恒温循环器进行冷却,其温度设定为-20℃,测试夹具为PP25 (25mm平板),间隙为1mm,测试使用直接应变振荡模式(DSO)。 图1 MCR流变仪,配有带控温罩的Peltier系统 使用附加的Peltier控温罩可以确保样品在整个温度范围内温度分布的均匀性,消除温度梯度,样品内部温度梯度是一个非常关键测试条件,温度梯度会导致错误的测试结果,而如果只用下板进行控温,那么将会形成较大的温度梯度。 在测试温度下设定零间隙,在25℃时装样;以10K/min的冷却速度降温到-40℃,冷却速度对样品在低温下的结构有非常重要的影响,因此可以通过改变降温速度测试不同条件对样品结构的影响。达到-40℃以后,样品稳定10分钟,为了防止结冰,需要通入氮气。 以角频率10rad/s进行振荡应变扫描,应变范围0.001%至100%;用应变扫描可以研究粘弹性、确定表观屈服应力等。 测试结果

医院检验中心VCS白细胞五项分类原理技术特点和应用问题

医院检验中心VCS白细胞五项分类原理、技术特点和应用 问题 VCS原理和技术特点 在一个流式通道内,对单个白细胞进行直接、同时、三重测量,然后再进行三维分析。 1.Scatterpak试剂保证”接近原态”分析,避免化学方法对细胞 特性的破坏 Scatterpak(Erythrolyse—低渗、低pH、具表面活化性) (Stabilyse—高渗、高pH) WBC EL 肿胀ST:恢复等渗、生理pH 接近原态 RBC----------------- 肿胀---------------------------------------去除debris-------流式通道 PLT 肿胀El的表面活化作用继续发挥去除debris (28μL) (300μL×2) (133μL)

2.流体动力聚焦细胞,令其在流式通道内作最适的单细胞排 列 ISOTON III作为鞘流 3.VCS检测-视角与手工相似 VCS技术检测细胞的角度与镜检血片相似,都是从体积、核质比、颗粒特性、膜特性和形态等方面观察。但检测工具的敏感度大大提高,描绘程度上更精细,细胞的状态比染色情况下的更自然。 Volume ◆运用低频电流准确分析细胞体积 体积是区分白细胞亚群一个很重要的参数,它能有效区分LY和MO。但仍然存在一定程度的混淆,如:LY和BA(φ同在9-12μm范围);不成熟LY和NE(φ同在12-14μm范围) ◆该技术1967年开始使用 ◆库尔特专利

Conductivity-Opacity ◆运用高频电磁探针检测细胞内含物(细胞核、颗粒和其他 化学组份)的特性。 细胞膜对高频电流具传导性,当电流通过细胞时,细胞核、颗粒和细胞内的化学组份令电流的传导产生变化,其变化量(RF)可以用来反映细胞内含物的信息 ◆RF=f(细胞体积,细胞内含物传导性) ◆Opacity(阻光性)是指将细胞体积对RF的影响去除后的高 频传导数据,可以更确切地描述细胞内含物 Opacity?RF/DC ◆该参数可用来进一步区别体积差不多的细胞,如:LY和 BA(φ同在9-12μm范围),由于它们的核质比不同而在C参数上有所区别 ◆库尔特先生在60年代着手研究该项技术,1970年获美国专 利 Light Scatter-RLS

第六章 高聚物熔体的流变性

第六章 高聚物熔体的流变性 1 定义下列术语: 1) 层流与湍流,2) 横向速度梯度与纵向速度梯度,3) 切粘度与拉伸粘度,4) 库爱特 流动(拖流动)与泊肃叶流动(压力流动),5) 牛顿流体与非牛顿流体,6) 宾哈塑性流体、假塑性流体和膨胀性流体,7)表观粘度 a η、零切变速率粘度 0η和极限粘度 ∞η,8) 熔融指数 MI ,9)挤出胀大比。 2 分别以线性座标和双对数座标画出牛顿流体、宾哈流体、假塑性流体和膨胀性流体的流 动曲线(即 γτ -和 γτ log log -曲线)以及它们的 γη -a 曲线。 ★ 3 已经测得某高聚物熔体的流动曲线如题6-3图所示,求:1) 0η和 ∞η;2) γ =10-1,1,104,108,1012时的 a η和非牛顿指数 n 。 (题6-3图) 4 为什么许多高聚物熔体都呈切力变稀的流动特性? 5 画出牛顿流体在圆管中流动(泊肃叶流动)时截面上各点的流速分布和速度梯度(切变 速率)分布。 ★ 6 如果某种塑料熔体在模腔中流动的速度分布如题6-6图所示,将会导致塑料制品中取向 分布的状况如何? 题6-6图 题6-7图 ★ 7 浇口在底部的注射成型薄壁塑料杯很容易以如题6-7图所示的方式开裂,试分析其原因。 8 测定熔体切粘度的常用方法有哪些?各方法适用于什么粘度范围和切变速率范围?写出 各方法中实测的量和计算切粘度的公式。 ★ 9 测得某高聚物熔体的熔融指数为0.4。已知熔融指数仪的活塞截面积为1cm 2,测试中所

用毛细管的长度为1cm,直径为0.1cm;设熔体密度为约13 cm g。试计算该熔体在流 过毛细管时管壁处的切变速率 R γ 、切应力Rτ以及该熔体的表观粘度aη(忽略各种校正)。当砝码重量改为21.6公斤时,测得这种高聚物熔体的熔融指数为8,问该高聚物熔体是牛顿流体还是非牛顿流体。 ★10试述聚合物分子量对流动活化能和熔体切粘度的影响。流动活化能与熔体切粘度的温度敏感性之间有什么关系?如何求聚合物的流动活化能。 ※11 试从自由体积理论推导出WLF方程 () () g g T T T T T a - + - - = 6. 51 44 . 17 log ※12橡胶、纤维、塑料三大合成材料对分子量的要求有什么不同?就塑料而言,对注塑级、挤出级和吹塑级(中空制品)的分子量有什么不同要求? ※13试根据所学的高物基本知识,分析减少注塑制品中弹性成分的措施。 ★14在塑料挤出成型中,如发现制品出现竹节形、鲨鱼皮一类缺陷,在工艺上应采取什么措施消除这类缺陷。 15 注射成型中,高聚物熔体经历的是否是纯剪切流动?为什么? ※16挤出胀大比与挤出工艺条件和口模长径比有什么关系?

钻井液习题

一、概念 1.粘土晶格取代:在粘土矿物晶体中,一部分阳离子被另外阳离子所置换,而晶体结构保持不变的现象。 2.钻井液剪切稀释性:钻井液中塑性流体和假塑性流体的表观粘度随着剪切速率的增加而降低的特性称为剪切稀释性。 3.碱度:指溶液或悬浮液对酸的中和能力。API选用酚酞和甲基橙两种指示剂来评价钻井液及其滤液碱性的强弱。 4.聚结稳定性:分散相粒子是否容易自动聚结变大的性质。 5. 粘土水化作用:粘土矿物表面容易吸附较多水分子的特性。 6. 流变模式:钻井液流变性的核心问题是研究各种钻井液的剪切应力与剪切速率之间的关系。用数学关系式表示称为流变方程,又称为流变模式。 8.粘土阳离子交换容量:是指在分散介质pH=7时,粘土所能交换下来的阳离子总量,包括交换性盐基和交换性氢。阳离子交换容量以100克粘土所能交换下来的阳离子毫摩尔数来表示.符号为CEC。 9.造浆率:一吨干粘土所能配制粘度(表观粘度)为15mPa.s钻井液的体积数,m3/T。 10.页岩抑制剂:凡是能有效地抑制页岩水化膨胀和分散,主要起稳定井壁作用的处理剂均可称做页岩抑制剂,又称防塌剂。 11.剪切稀释性:塑性流体和假塑性流体的表观粘度随着剪切速率的增加而降低的特性称为剪切稀释性。 12.动切力:塑性流体流变曲线中的直线段延长线与切应力轴的交点为动切力,又叫屈服值。 13.静切力:使流体开始流动的最低剪切应力称为静切力。 14.流变性:是指在外力作用下,物质发生流动和变形的特征;对于钻井液而言,其流动性是主要的方面。 15.滤失造壁性:在压力差作用下,钻井液中的自由水向井壁岩石的裂隙或孔隙中渗透,称为钻井液的滤失作用。在滤失过程中,随着钻井液中的自由水进入岩层,钻井液中的固相颗粒便附着在井壁上形成泥饼(细小颗粒也可能渗入岩层至一定深度),这便是钻井液的造壁性。 16.粘土高温分散作用:在高温作用下,钻井液中的粘土颗粒分散程度增加,颗粒浓度增加、比表面增大的现象。 17.钻井液高温增稠作用:高温分散作用使钻井液中粘土颗粒浓度增加,钻井液的粘度和切力也均比相同温度下理想悬浮体的对应值高的现象,称为高温增稠作用。 18.钻井液高温胶凝作用:高温分散引起的钻井液高温增稠与钻井液中粘土含量

面团流变学特性的研究及应用资料

面团流变学特性的研究及应用 摘要:面团是多种食品的加工原料,其流变学特性对食品的加工制作有极大的影响,甚至起决定性作用,不同的食品对面团的流变学特性有不同的要求,本文研究了面团的流变学特性,列举了研究方法、仪器以及指标,介绍了面团流变学的研究意义,并对馒头、面条、饺子、饼干以及面包五种食品对面团的流变学特性进行了介绍描述。 关键词:面团;流变学特性;应用

1.食品流变学概述 流变学是研究物质形态和流动的学科。食品流变学主要研究作用于物体上的应力和由此产生的应变规律,是力、变形和时间的函数,主要研究的是食品受外力和形变作用的结构。通过对食品流变特性的研究,可以了解食品的组成、内部结构和分子形态等,能为产品配方、加工工艺、设备选型及质量检测等提供方便和依据。近年来由于食品的深加工性、工艺及设备设计的依据性等的需要,食品流变学的研究变得愈来愈广泛【1】。 食品流变特性在生活中随处可见,如打蛋和搅蛋过程中蛋液的流动特性、和面时面团的弹性和变形、花生酱的涂抹等【2】。通过对食品的流变性的研究,可将食品分为固体类食品、牛顿流体类食品、非牛顿流体类食品、粘弹性体类食品以及塑性液体类食品五大类。其中粘弹性体类食品是一类介于固态食品与液态食品之间的具有弹性特性又有粘性特性的粘弹性体。属于这一类食品的有米面粉团、淀粉团、冻凝胶等【3】。本文主要研究面团的流变性以及不同产品对面团流变特性的要求。 2.面团流变学的研究 2.1面团 小麦粉是各种各样面制品的基础原料,与水混合后,由于面筋的形成从而形成了具有黏弹性且具有一定流动性的面团,面团的这种黏弹性和流动性称为面团的流变学特性【4】。水在面团的黏弹性中有重要作用,若要形成很好的面团加水量一定要适中,过多或不足均无法形成良好的面团,面团质量的好坏直接影响产品的质量。当加适当水混匀时,蛋白质结合在一起形成连续的黏弹性面筋网状结构,此时淀粉与水合面筋的大分子网络形成连续的颗粒网状结构,这两个独立的网络和他们的相互作用形成了面团的流变学特性,在揉和过程中,脂类和其它成分均被揉和到面筋蛋白网络中。因此,面筋蛋白的含量和质量是影响面团及面制品品质的重要因素【5】。面筋蛋白根据是否溶于乙醇,可分为两类:麦谷蛋白和麦醇溶蛋白。麦谷蛋白决定小麦粉面团的弹性,而麦醇溶蛋白则影响面团延伸性【6】。 2.2面团流变特性研究的意义 在面食类食品加工中,面团的品质其决定性作用,面团流变学特性是小麦品质的指标之一,受面粉蛋白质含量、面筋含量等组成成分的影响, 它决定着小麦和其烘焙、蒸煮食品等最终产品的加工品质, 可以给小麦粉的分类和用途提供一个实际的、科学的依据。研究面团的流变学特性有着重要的意义:(1)面团的结构和性质直接由其品种的品质状况决定, 蛋白质含量和质量、淀粉的种类和组合、脂肪的结构和组成以及矿物质、维生素的多少都直接影响到面团的粉质、拉伸、揉混等特性;(2)面团的性质又直接影响到面包等制成品的

7.高聚物熔体的流变性质

第一章 高聚物熔体的流变性质 主要内容:(1)液体的流动类型 (2)高分子熔体的流动特征 (3)影响高聚物熔体粘度的因素 (4)高聚物熔体弹性效应的表现 (5)高聚物熔体粘度的测量方法 难点内容:弹性效应的理解 掌握内容:(1)牛顿流体和非牛顿流体的流动特征 (2)高聚物熔体的流动特征及影响流动温度的因素 (3)影响切粘度的结构因素及外在因素 理解内容:(1)高聚物熔体的流动机理 (2)高聚物熔体弹性效应的机理、现象及影响因素 了解内容:(1)高聚物熔体粘度的测量方法 (2)拉伸粘度的基本情况 §8 高聚物的基本流变性质 §8、1流变学的基本概念简介 一、流动的方式 1、速度方向 2、速度梯度方向 剪切流动 a 库爱特(拖流动) b 泊肃叶(压力流) 拉伸流动 速度方向平行速度梯度方向 二.流体的基本类型 γγ ? ==?=?=dt d dt dy dx dy dt dx dY dv 11 (1) 牛顿流体 στ=η·γ (η为常数) 熔体结构不变 (2) 非牛顿流体 表观粘度ηa = γ τ σ?

a. 胀塑流体 n k a γ γηστ? ? ==? γ↑ ηa b. 假塑性流体 στ=ηa γn (n<1) γ↑.ηa ↓ (剪切变稀) c. στ=σb + k γn 三.假塑性流体的基本特性 习题 1.名词解释 牛顿流体 非牛顿流体 假塑性流体 胀塑性流体 Bingham 流体 零切粘度 表观粘度 熔融指数 第一法向应力差 挤出胀大 真实粘度 2.大分子流动是如何实现的? 3.大分子流动的基本特征是什么? 4.流体流动的基本类型有哪些?分别用τ-γ、η-γ、lg τ-lg γ、lg η-lg γ曲线示意图。 5.分析假塑性流体流动的η-γ曲线,并从分子运动论的角度给予解释。

钻井液流变参数的计算及应用

钻井液流变参数(塑性粘度,动切力,静切力,n,k)的测量与计算 钻井液的流变参数与钻井工程有着密切的关系,是钻井液重要性能之一。因此,在钻井过程中必须对其流变性进行测量和调整,以满足钻井的需要。钻井液的流变参数主要包括塑性粘度、漏斗粘度、表观粘度、动切力和静切力、流性指数、稠度系数等。 一、旋转粘度计的构造及工作原理 旋转粘度计是目前现场中广泛使用的测量钻井液流变性的仪器。它由电动机、恒速装置、变速装置、测量装置和支架箱体等五部分组成。恒速装置和变速装置合称旋转部分。在旋转部件上固定一个能旋转的外筒。测量装置由测量弹簧、刻度盘和内筒组成。内筒通过扭簧固定在机体上、扭簧上附有刻度盘,如图4—1所示。通常将外筒称为转子,内筒称为悬锤。 测定时,内筒和外筒同时浸没在钻井液中,它们是同心圆筒,环隙1mm左右。当外筒以某一恒速旋转时,它就带动环隙里的钻井液旋转。由于钻井液的粘滞性,使与扭簧连接在一起的内筒转动一个角度。根据牛顿内摩擦定律,转动角度的大小与钻井液的粘度成正比,于是,钻井液粘度的测量就转变为内筒转角的测量。转角的大小可从刻度盘上直接读出,所以这种粘度计又称为直读式旋转粘度计。 转子和悬锤的特定几何结构决定了旋转粘度计转子的剪切速率与其转速之间的关系。按照范氏仪器公司设计的转子、悬锤组合(两者的间隙为1.17mm),转子转速与剪切速率的关系为: 1 r/min=1.703s-1(4-1) 旋转粘度计的刻度盘读数θ (θ为圆周上的度数,不考虑单位)与剪切应力τ(单位为Pa) 成正比。当设计的扭簧系数为3.87×10-5时,两者之间的关系可表示为: τ=0.511θ (4-2) 旋转粘度计有两速型和多速型两种。两速型旋转粘度计用600 r/min和300 r/min这两种固定的转速测量钻井液的剪切应力,它们分别相当于1022s-1和511s-1的剪切速率(由式 4-1计算而得)。但是,仅在以上两个剪切速率下测量剪切应力具有一定的局限性,因为所测得的参数不能反映钻井液在环形空间剪切速率范围内的流变性能。因此,目前国内外已普遍使用多速型旋转粘度计。 六速粘度计是目前最常用的多速型粘度计,该粘度计的六种转速和与之相对应的剪切速率见表4-1 表4-1 转速与剪切速率的对应关系

SKF润滑脂分类及特性

SKF润滑脂分类及特性 1、LGMT 2 SKF广泛用于工业和汽车的通用轴承润滑脂 LGMT 2是一种优质的通用润滑脂,广泛用于工业和汽车轴承它由矿物油加锂基皂配制而成,具有以下特点:优越的氧化稳定性良好的机械稳定性良好的耐腐蚀性 2、LGMT 3 SKF广泛用于工业和汽车的通用轴承润滑脂 LGMT 3是一种优质的通过润滑脂,广泛用于工业和汽车轴承它由矿物油加锂基皂配制而成,具有以特点:极长的润滑脂寿命优越的氧化稳定性良好的机械稳定性良好的耐水性良好的耐腐蚀性 3、LGEP 2 SKF极压轴承润滑脂 LGEP 2是一种以矿物油为基油的润滑脂,采用锂基皂,并含有极压添加剂。这种润滑脂具有以下特点:在恶劣的工作条件下可降低磨损运行噪音极低在高负荷低速下润滑性能好优越的氧化稳定性优越的耐水性良好的耐腐蚀性 4、LGLT 2 SKF低温轴承润滑脂 LGLT 2是一种以合成酯油为基油润滑脂,采用锂基皂。由于合成油受温度的影响不大,因此LGLT 2可用于-55℃(-65℉)的低温。这种润滑脂用于产品型号为LT 20的SKF轴承的预填。这种润滑脂具有以下特点:润滑脂寿命长优越的低温润滑性在高速低负荷下具有优越的轴承润滑性良好的耐腐蚀性 5、LGHP 2 SKF高性能轴承润滑脂

LGHP 2是一种以矿物油为基油的优质润滑脂,采用聚脲(双脲)增稠剂。它具有优越的润滑性能,适用于-40℃(-40℉)至150℃(302℉)的温度范围。这种润滑脂具有以下特点:高温下寿命极长适用温度范围大优越的耐腐蚀性热稳定性高良好的低温启动性可与一般聚脲润滑脂混合使用可与锂基复合增稠剂润滑脂混合使用 6、LGHQ 3 SKF高温轴承润滑脂 LGHQ 3是一种以矿物油为基油的优质润滑脂,采用锂基复合皂。当轴承持续工作温度超过80℃(176℉)时个有优越的润滑性。LGHQ 3是为需要运行噪音极低的轴承特制的。用于预填SKF型号为HT22VU082的轴承。这种润滑脂具有以下特点:在较高的工作温度下使用寿命长在80℃(176℉)至150℃(302℉)工作温度下具有优越的润滑性良好的耐水性良好的耐腐蚀性运行噪音极低,超过了当今的工业标准 7、LGFP 2 SKF食品级轴承润滑脂 LGFP 2是一种清洁、无毒、无污染、不含矿物烃的润滑脂,它采用菜籽油及钙基皂。其配方中只采用FDA*测试合格的成份,经USDA**批准可用于H1***类食品机械。这种润滑脂具有以下特点:符合所有现行颁布的食品卫生保护法耐水冲刷性好,因而能用于经常需要清洗的场合良好的承载性,因而轴承磨损程度轻优越的耐腐蚀性PH值非常接近中性 8、LGGB 2 SKF可生物降解绿色轴承润滑脂

原油流变学

第一章 1粘性;当相邻流层存在着速度差时,快速流层力图加快慢速流层,慢速流层力图减慢快速流层,这种相互作用随着速度差的增加而加剧,流体所具有的这种性质就是粘性2动力粘度:流体对变形的抵抗随形变速率的增加而增加的性质 3运动粘度:动力粘度与同温度下流体密度的比值4流变学:是一门研究材料或物质在外力作用下变形与流动的科学5流变学研究的是纯粘性固体与牛顿流体状态间的所有物质的变形与流动的问题5物质的流变性:物体在外力的作用下变形与流动的性质6连续介质:就是把物质看做是由一个挨一个的,具有确定质量的,连续的充满空间的众多微小质点所组成的7一般施加到材料上的力有三种或三种的组合:拉力,压缩力,切向力8应变速率又分为拉伸应变速率和剪切应变速率9剪切应变速率描述的是流体的剪切运动,拉伸应变速率描述流体的拉伸运动10剪切速率:单位时间内剪切应变的变化11本构方程(流变状态方程,流变方程):料宏观性质的数学模型12物质的流变学分类:刚体,线性弹性体,弹粘性体(弹粘性固体,粘弹性流体),非线性粘性流体,牛顿流体,无粘性流体。13德博拉准则:De很小,呈现粘性,很大,呈现弹性14分散体系:指将物质(固态,液态,气态)分散成或大或小的粒子,并将其分布在某种介质之中所形成的体系15非均匀分散体系具备的2个条件:在体系内个单位空间所含物质的性质不同,存在着分界的物理界面16流体的流变性分类:按照流体是否含牛顿内摩擦定律(牛顿流体,非牛顿流体),按流体是否具有弹性(纯粘性流体,粘弹性流体),按照流变性是否与时间有关(与时间有关的流体,与时间无关的流体)17与时间无关的流体:牛顿流体,胀流型流体,宾汉姆流体,屈服-假塑性流体,卡森流体18随着剪切速率的增加,表观粘度是减小的,因此假塑性流体具有剪切稀释性19剪切稀释性:对于假塑性流体,随着剪切速率的增加或剪切应力的增加,表观粘度降低,对其他类型的非牛顿流体,也表明这一特点,这一特点在流变学上称为剪切稀释性20具有剪切稀释性的原因:假塑性流体是最常见的非牛顿流体,在乳胶类,悬浮类,分散类物料中广泛遇到。这些体系中存在着大分子,细颗粒,在静止时他们松散的集合或自由的排列,在外力的作用下会很快的使之分散或定向,使流动阻力相对的减小,表现出剪切变稀的特性21胀流型流体的内部结构特点:剪切增稠性是流体结构从一种有序状态到无序状态的变化;剪切力超过了颗粒之间的胶体力,因为这种流体是在自身胶体力的作用下形成有序结构的;具有不太低的内相浓度,且内相浓度处于一个较窄的范围内;内相颗粒的尺寸分布是单分散强于多分散;剪切增稠性还与颗粒尺寸分布是单分散强于多分散;剪切增稠性还与颗粒尺寸,界面性质和介质粘度有关;剪切增稠性往往只产生一定的剪切速率范围内,在更低或更高的剪切速率下,其流变性可能呈现假塑性或屈服-假塑性状态22剪切增稠性:随着剪切速率的增大,流体的表观粘度增大23屈服值:流体产生的大于零的剪切速率所需的最小切应力24屈服值得大小主要是由体系所形成的空间网状结构的性质所决定的 25屈服-假塑性流体:有些物料在较小的外力作用下,观察不到流动现象,只有当外力大于某值时,物料才发生流动,但流动发生后,剪切速率又对剪切应力的影响是非线性的,表现出这种特性的流体是屈服-假塑性流体26触变性:在剪切应力作用下,表观粘度随时间连续下降,并在应力消除后表观粘度又随时间而逐渐恢复27反触变性流体:在恒定的剪切应力或剪切速率作用下,其表观粘度随剪切作用时间逐渐增加,当剪切消除后,表观粘度又逐渐恢复28触变性流体的触变行为特征:流体的表观粘度随剪切时间而下降;流体的表观粘度随静止的时间而增长;流体存在动平衡态流变曲线;反复循环流体可得滞回环;无限循环剪切流体可得到平衡滞回环29触变性机理:30粘弹性流体:既具有粘性又具有弹性的一类流体31粘弹性流体的流变现象;爬杆现象,挤出胀大现象,同心套管轴向流动现象,回弹现象,无管虹吸现象,次级流现象32应力松弛:当对粘性体施加外力使其变形并保持应变一定时,应力会随时间而逐渐减小,这种现象为应力松弛33弹性之后:粘弹性体的应力-应变曲线不是直线,而且其应力上升与下降对应的应力-应变曲线不重合,这种现象称为弹性滞后34流变学的三种流变模型:元件型(弹性元件,粘性元件),简单组合型,复杂组合型麦克斯韦模型:一个弹性元件和一个粘性元件串联即构成麦克斯韦模型35作用在分散相颗粒上的力:胶体源力,布朗力,粘性力36原油中的烃类化合物主要包括:烷烃,环烷烃,芳香烃,非烃类化合物主要是沥青质和胶质37在常温常压下,C1~C4的烷烃为气态,C5~C16的烷烃为液态,C17以上的烷烃为固态38原油的流变性取决于原油的组成,即取决于原油中溶解气,液体和固体物质的含量,以及固体物质的分散程度,原油属于胶体体系,

第五章 高聚物熔体的流变性(完整资料).doc

【最新整理,下载后即可编辑】 第五章 高聚物熔体的流变性 当温度超过流动温度T f 或熔点T m 时,高聚物处于粘流态, 并成为熔体。 熔体的流动,不仅表现出黏性流动(不可逆形变); 而且表现出弹性形变(可逆形变)。因此,称为流变性, 而流变学是研究材料流动和变形的科学。 一、 高聚物的流动机理 ● 小分子的流动过程:分子与空穴交换位置的过程; 流动阻力,即粘度:RT E Ae ηη?=, A 常数,ηE ?流动活化能; 由RT E A η η?+=ln ln ,求得ηE ? ● 高分子的流动过程,不可能按小分子机理(对应于整个分子 的空穴太大),只能通过链段的逐步位移过程来完成整个分子的 位移(只需链段大小的空穴)。 二、 高聚物的流动方式 流体的基本流变性-剪切流动,根据切应力στ与切变速率γ 间 的关系(流动曲线),将流体分为牛顿型和非牛顿型流体。

(1) 牛顿流体 dy dV ηστ=, dt d dy dx dt dt dx dy dy dV γ===)(1)(1 所以:γηστ =,牛顿流动定律 ● 牛顿流体的粘度仅与流体分子的结构和温度有关,与 στ或γ 无关;切应力与速度梯度成正比。 ● 小分子可看作是牛顿流体,但高聚物熔体和浓溶液并不 服从牛顿定律。 (2)非牛顿流体 ● 特点:粘度随στ、γ 或时间而变化,粘度非常数。 ● 根据流动曲线特征,非牛顿流体具有如下几种类型:

i) 宾汉塑性体 流动曲线为直线,但不通过原点,存在临界σ y 值,只有στ>σy时,才能流动。στ<σy时,不能流动,类似弹性体。 γη σ σ τ = - y ii) 假塑性体 特征:表观粘度随切变速率的增大而减小,即切力变稀。 绝大多数高聚物均属于这种体系,因此最重要。 στ与γ 之间不呈线型关系,定义其表观粘度为(流变曲线与原点直线斜率): γγ σ γ η ητ ) ( ) (= = a a η不完全反映高分子熔体不可逆形变的难易程度,而是塑性形变与弹性形变的汇合;

润滑脂的主要性能指标

润滑脂的主要性能指标 1、锥入度 锥入度是评价润滑脂稠度的常用指标,它是在规定负荷、时间和温度的条件下,标准锥体沉入润滑脂的深度,单位为0.1mm。锥入度愈大,表示润滑脂稠度愈小,反之则稠度愈大。 润滑脂的稠度等级是按锥入度来划分的,国内、外都采用美国润滑脂协会(NLGI>按工作锥入度划分的润滑脂稠度等级,润滑脂的级号愈小,锥入度愈大,润滑脂愈软。 2、滴点 在试验条件下,润滑脂从杯中滴下第一滴或成柱状触及试管底部时的温度,称为润滑脂的滴点。滴点是衡量润滑脂耐温程度的参考指标,一般润滑脂的最高使用温度要低于滴点20-30℃,这样才能使润滑脂长期工作而不至于流失。 润滑脂滴点的高低,主要撒于稠化剂的种类和数量。 3、保护性能 润滑脂的保护性能是指保护金属表面、防止生锈的作用,它包括三个方面:①本身不锈蚀金属;②抗水性好,即不吸水、不乳化、不易被水冲掉;③粘附性好、高温不滑落、低温不龟裂,能有效地粘附于金属表面而将空气和腐蚀性物质隔绝。 4、安定性 润滑脂的安定性包括胶体安定性、化学安定性和机械安定性。润滑脂

在贮存和使用中的抑制析油的能力,称为润滑脂的胶体安定性。胶体安定性差的润滑脂,析油严重,不宜长期贮存。发现润滑脂轻度析油时,可将其搅拌均匀后尽早使用。润滑脂在贮存和使用中抵抗氧化的能力,叫做润滑脂的化学安定性。皂基脂比较容易氧化,严重氧化的皂基脂,颜色变深,有恶臭,对金属产生腐蚀,自身变软或结块。润滑脂的机械安定性,是指润滑脂受到机械剪切时,稠度立即下降,当剪切作用停止后,其稠度又可恢复(但不能恢复到原来的程度)。机械安定性差的润滑脂,其使用寿命短。 5、流变性 润滑脂在外力作用下产生形变流动的性能,称为流变性,其参考指标有强度极限和相似粘度。从降低机械摩擦力和便于管道供脂出发,润滑脂的强度极限和相似粘度不宜过大。 6、蒸发损失 润滑脂在使用中常常由于流失、蒸发和氧化变质而逐渐消耗,特别在高温工作时蒸发更易成为严重的问题。蒸发夺去了脂中的润滑液体成分,从而改变了润滑脂组织影响其使用性能。 润滑脂的蒸发性对既需要在高温同时也需要在低温条件下工作具有重要意义,因为在零下低温工作的润滑脂,其基础油的粘度和凝点都要求很低,而大多数低粘度、低凝点的矿油都含有较轻的馏分,在不高温度(100℃)时就会大量蒸发。因此,宽温度范围使用的润滑脂常常只能用合成润滑油作基础油。 将蒸发损失和滴点结合起来,可以较好地评价高温润滑脂的高温性

白细胞五分类原理和散点图特征

血细胞仪白细胞五分类法原理和散点图特征2008-12-14来源:检验世界网浏览:5747次转发至:我要评论【字号:大中小】 核心提示:本文主要介绍全自动血细胞分析仪在白细胞五分类上的原理和散点图分布特点。此类仪器在红细胞、血红蛋白、血小板和计算参数上一般会采用类似的测定原理和计算方法,此类仪器的进展和其功能特点可参考作者撰写的其它文章。赞 北京协和医院检验科张时民检验地带网 血细胞分析技术已经进入自动化时代,而具有白细胞五分类或更多分析参数的仪器也普遍的应用于国内各级医院实验室中,为临床诊断和治疗服务。而具有18项参数带有白细胞三分群功能的血细胞分析仪也已经普及进入到基层医院和社区医疗中心,在许多大型医院中已不占主流位置,因此可以说目前在较大医院的检验科,常规血细胞分析仪已经进入全自动化和白细胞五分类的时代。 本文主要介绍全自动血细胞分析仪在白细胞五分类上的原理和散点图分布特点。此类仪器在红细胞、血红蛋白、血小板和计算参数上一般会采用类似的测定原理和计算方法,此类仪器的进展和其功能特点可参考作者撰写的其它文章(见参考文献)。具有白细胞五分类功能的血细胞分析仪器是指通过各种物理和化学技术对白细胞进行分析,以获得外周血液中白细胞的五种常见类型,嗜中性粒细胞,嗜酸性粒细胞,嗜碱性粒细胞,淋巴细胞和单核细胞的百分率和绝对值的测定结果,此外还应该具有对出现异常白细胞的提示或初步分类功能。 目前国内外具有开发研制白细胞五分类法仪器的主要为欧美和日本生产厂商,比较着名的欧美厂家有Beckman-Coulter;ABBOTT;Siemens(Bayer);ABX;日本有Sysmex 和NihonKohdon。在国内已经有迈瑞(MINDRAY)公司生产几个型号的五分类血细胞分析仪器投入医疗市场。 检验地带网 一简要发展史 1974年,一种名为HEMALOGD的具有初步白细胞分类功能的白细胞分析仪问世。1982年,Technicon公司生产了H6000型血液细胞分析仪器,应该是首款具有白细胞五分类能力的仪器。同时代日本日立公司推出图像分析法的白细胞分析仪HITACHI8200型,仅仅是用于完成白细胞血片分类的仪器,没有其他血细胞计数分析能力。Technicon公司1985年开发了比较成熟的具有白细胞五分类功能的TechniconH1型血液细胞分析仪,随后升级为H2型和H3型。 COULTER公司在1987年开发研制其经典VCS技术,并推出持续具有多年影响力的、具有白细胞五分类功能的血液细胞分析仪MAXM型。 1990年前后,欧洲和日本许多厂家都陆续推出了各种类型的具有白细胞五分类功能的血细胞分析仪器。各厂家设计生产的此类血细胞分析仪,其在白细胞分类技术上原理各不相同,分析测定项目略有不同,且形式多样,结构复杂,试剂种类和成分也趋于复杂。不断改进和升级的新产品使得仪器在白细胞分类技术上更加成熟和可靠。而技术的提高也带来了仪器和消耗品(试剂)价格的增加。 检验地带网 二仪器原理和散点图特点 1体积、电导和激光散射原理 这是Beckman-Coulter公司生产的血细胞分析仪所采用的经典分析方法,他集三种物理学检测技术于一体,在细胞处于自然原始的状态下对其进行多参数分析。该方法也称为体积、电导、激光散射血细胞分析法。此技术采用在标本中首先加入红细胞溶血

相关文档
最新文档