梁弯曲时横截面上的内力剪力与弯矩
弯曲应力计算 (1)

第7章弯曲应力引言前一章讨论了梁在弯曲时的内力——剪力和弯矩。
但是,要解决梁的弯曲强度问题,只了解梁的内力是不够的,还必须研究梁的弯曲应力,应该知道梁在弯曲时,横截面上有什么应力,如何计算各点的应力。
在一般情况下,横截面上有两种内力——剪力和弯矩。
由于剪力是横截面上切向内力系的合力,所以它必然与切应力有关;而弯矩是横截面上法向内力系的合力偶矩,F时,就必然有切应力τ;所以它必然与正应力有关。
由此可见,梁横截面上有剪力Q有弯矩M时,就必然有正应力 。
为了解决梁的强度问题,本章将分别研究正应力与切应力的计算。
弯曲正应力纯弯曲梁的正应力由前节知道,正应力只与横截面上的弯矩有关,而与剪力无关。
因此,以横截面上只有弯矩,而无剪力作用的弯曲情况来讨论弯曲正应力问题。
在梁的各横截面上只有弯矩,而剪力为零的弯曲,称为纯弯曲。
如果在梁的各横截面上,同时存在着剪力和弯矩两种内力,这种弯曲称为横力弯曲或剪切弯曲。
例如在图7-1所示的简支梁中,BC段为纯弯曲,AB段和CD段为横力弯曲。
分析纯弯曲梁横截面上正应力的方法、步骤与分析圆轴扭转时横截面上切应力一样,需要综合考虑问题的变形方面、物理方面和静力学方面。
图7-1变形方面为了研究与横截面上正应力相应的纵向线应变,首先观察梁在纯弯曲时的变形现象。
为此,取一根具有纵向对称面的等直梁,例如图7-2(a)所示的矩形截面梁,并在梁的侧面上画出垂直于轴线的横向线m-m、n-n和平行于轴线的纵向线d-d、b -b 。
然后在梁的两端加一对大小相等、方向相反的力偶e M ,使梁产生纯弯曲。
此时可以观察到如下的变形现象。
纵向线弯曲后变成了弧线''a a 、''b b , 靠顶面的aa 线缩短了,靠底面的bb 线伸长了。
横向线m -m 、n -n 在梁变形后仍为直线,但相对转过了一定的角度,且仍与弯曲了的纵向线保持正交,如图7-2(b)所示。
梁内部的变形情况无法直接观察,但根据梁表面的变形现象对梁内部的变形进行如下假设:(1) 平面假设 梁所有的横截面变形后仍为平面.且仍垂直于变形后的梁的轴线。
梁横截面上的应力

2)计算C截面上的最大拉应力和最大压应力。
C截面上的最大拉应力和最大压应力为
tC
M C y2 I
2.5103 N m 8.810-2 m 7.6410-6 m4
Z
28.8106 P a 28.8MP a
cC
M
B
y 1
Iz
2.5 103 N m 5.2 10-2 m 7.6410-6 m 4
17.0 106 P a 17.0MP a
3)计算B截面上的最大拉应力和最大压应力。
B截面上的最大拉应力和最大压应力为
tB
M
B
y 1
Iz
4 103 N m 5.2 10-2 m 7.6410-6 m 4
27.2 106 P a 27.2MP a
cB
M B y2 Iz
4 103 N m 8.810-2 m 7.6410-6 m4
【例4.17】 求图(a,b)所示T形截面梁的最大拉 应力和最大压应力。已知T形截面对中性轴的惯性矩 Iz=7.64106 mm4,且y1=52 mm。
【解】 1)绘制梁的弯矩图。
梁的弯矩图如图(c)所示。 由图可知,梁的最大正弯矩发 生在截面C上,MC=2.5kNm; 最 大负弯矩发生在截面B上,MB= -4kNm。
入,求得的大小,再根据弯曲变形判断应力的正(拉)
或负(压)。即以中性层为界,梁的凸出边的应力为拉 应力,凹入边的应力为压应力。
(2)横截面上正应力的分布规律和最大正应力 在同一横截面上,弯矩M 和惯性矩Iz 为定值,因此
由公式可以看出,梁横截面上某点处的正应力σ与该点到 中性轴的距离y成正比,当y=0时,σ=0,中性轴上各点处 的正应力为零。中性轴两侧,一侧受拉,另一侧受压。离 中性轴最远的上、下边缘y=ymax处正应力最大,一边为最 大拉应力σtmax,另一边为最大压应力σcmax。
工程力学习题册第八章 - 答案

第八章 直梁弯曲一、填空题1.工程中 发生弯曲 或以 弯曲变形 为主的杆件称为梁。
2.常见梁的力学模型有 简支梁 、 外伸梁 和 悬臂梁 。
3.平面弯曲变形的受力特点是 外力垂直于杆件的轴线,且外力和力偶都作用在梁的纵向对称面内 ;平面弯曲变形的变形特点是 梁的轴线由直线变成了在外力作用面内的一条曲线 ;发生平面弯曲变形的构件特征是 具有一个以上对称面的等截面直梁 。
4.作用在梁上的载荷有 集中力 、 集中力偶 和 分布载荷 。
5.梁弯曲时,横截面上的内力一般包括 剪力 和 弯矩 两个分量,其中对梁的强度影响较大的是 弯矩 。
6.在计算梁的内力时,当梁的长度大于横截面尺寸 五 倍以上时,可将剪力略去不计。
7.梁弯曲时,某一截面上的弯矩,在数值上等于 该截面左侧或右侧梁上各外力对截面形心的力矩 的代数和。
其正负号规定为:当梁弯曲成 凹面向上 时,截面上弯矩为正;当梁弯曲成凸面向上 时,截面上弯矩为负。
8.在集中力偶作用处,弯矩发生突变,突变值等于 集中力偶矩 。
9.横截面上弯矩为 常数 而剪力为 零 的平面弯曲变形称为 纯弯曲变形 。
10.梁纯弯曲变形实验中,横向线仍为直线,且仍与 梁轴线 正交,但两线不再 平行 ,相对倾斜角度θ。
纵向线变为 弧线 ,轴线以上的纵向线缩短,称为 缩短 区,此区梁的宽度 增大 ;轴线以下的纵向线伸长,称为 伸长 区,此区梁的宽度 减小 。
情况与轴向拉伸、压缩时的变形相似。
11.中性层与横截面的交线称为 中性轴 ,变形时梁的 所有横截面 均绕此线相对旋转。
12.在中性层凸出一侧的梁内各点,其正应力均为 正 值,即为 拉 应力。
13.根据弯曲强度条件可以解决 强度校核 、 截面选取 和 确定许可载荷 等三类问题。
14.产生最大正应力的截面又称为 危险截面 ,最大正应力所在的点称为 危险点 。
15.在截面积A 相同的条件下, 抗弯截面系数 越大,则梁的承载能力就越高。
剪力图和弯矩图

2 括号里的不等式说明对应的内力方程所使用的区段。
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 剪力图为一斜直线
FS(0) 0 FS(l) ql
弯矩图为二次抛物线
M (0) 0 M ( l 2 ) 1 ql 2
8 M ( l ) 1 ql 2
绘剪力图和弯矩图的基本方法:首先分别写出梁 的剪力方程和弯矩方程,然后根据它们作图。
Fs(x)
o
x
o
x
Fs 图的坐标系
M(x) M 图的坐标系
不论在截面的 左侧 或 右侧 向上的外力均将引起 正值 的弯矩,而向下 的外力则引起 负值 的弯矩。
例题:图示简支梁 ,在全梁上受集度为 q 的均布荷载作用。 试作此梁的剪力图和弯矩图。
FS 称为 剪力
y
FA
m
C
A
xm
FS x
由平衡方程
a
P
m
m C0
MFAx0
A
B
m
可得 M = FAx
x
内力偶 M 称为 弯矩
y
FA
m FS
C
x
A
xm
M
结论
a
P
m
梁在弯曲变形时,
横截面上的内力有
A
B
两个,即,
m x
剪力 FS 弯矩 M
y
FA
m FS
C
x
A
xm
M
取右段梁为研究对象。
y
FA
m FS
-
FS FS
dx
(2)弯矩符号 横截面上的弯矩使考虑的脱离体下边受拉,上边受压时为 正 。
弯曲应力

定义:弯曲应力简单的说即弯曲产生的应力。
弯曲应力分为正应力和切应力。
相关知识点:
1)受弯构件横截面上有两种内力--弯矩和剪力。
弯矩M在横截面上产生正应力;剪力在横截面上产生剪应力。
2)已知横截面上的内力,求横截面上的应力属于静不定问题,必须利用变形关系、物理关系和静力平衡关系。
弯矩产生的正应力是影响强度和刚度的主要因素,故对弯曲正应力进行了较严格的推导。
剪力产生的剪应力对梁的强度和刚度的影响是次要因素,故对剪应力公式没作严格推导,先假定了剪应力的分布规律,然后用平衡关系直接求出剪应力的计算公式。
3)梁进行强度计算时,主要是满足正应力的强度条件。
某些特殊情况下,还要校核是否满足剪应力的强度条件。
4) 根据强度条件表达式,提高构件弯曲强度的主要措施是:减小最大弯矩;提高抗弯截面系数和材料性能。
5)弯曲中心是薄壁截面梁横弯时,横截面上剪应力的合力作用点。
因此横弯作用的薄壁截面梁,发生平面弯曲的充要条件是:横向载荷过弯曲中心和平行于
形心主轴。
3.应用要点
弯曲应力是指法向应力的变化分量沿厚度上的变
化可以是线性的,也可以是非线性的。
其最大值发生在壁厚的表面处,设计时一般取最大值进行强度校核。
壁厚的表面达到屈服极限后,仍能继续提高承载能力,但表面应力不再增加,屈服层由表面向中间扩展。
所以在压力容器中,弯曲应力的危害性要小于相同数值的薄膜应力。
梁 弯矩图 梁 内力图 (剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
剪 力和弯矩

∑Y=0 FA FS = 0
得
FS = FA
FS称为剪力。
目录
弯曲内力\剪力和弯矩
因剪力FS与支座反力FA组成一力偶,故在横截面m—m上必然 还存在一个内力偶与之平衡。设此内力偶的矩为M,则由平衡方程
∑MO=0 M FAx = 0
得
M = FAx
这里的矩心O是横截面m—m的形心。这个内力偶矩M称为弯矩,它 的矩矢垂直于梁的纵向对称面。
目录
力学
FA =FB =10kN
目录
弯曲内力\剪力和弯矩
2)求横截面1—1上的剪力和弯矩。取左段梁为研究对象,并 设截面上的剪力FS1和弯矩M1均为正(如图)。列出平衡方程
∑Y=0 FA FS1= 0
得
FS1=FA=10 kN
∑MO=0 M1FA1 m =0
得
M1=FA1 m =10 kN 1 m =10 kNm
如果取右段梁为研究对象,则同样可求得
横截面m—m上的剪力FS和弯矩M(如图), 且数值与上述结果相等,只是方向相反。
为了使无论取左段梁还是取右段梁得到的同一横截面上的FS和 M不仅大小相等,而且正负号一致,根据变形来规定FS、M的正负 号:
目录
弯曲内力\剪力和弯矩 1)剪力的正负号。梁截面上的剪力对所取梁段内任一点的矩为
顺时针方向转动趋势时为正,反之为负(图a); 2) 弯矩的正负号。梁截面上的弯矩使梁段产生上部受压、下部
受拉时为正,反之为负(图b)。
目录
弯曲内力\剪力和弯矩
【例4.1】 简支梁如图所示。求横截面1—1、2—2、3—3上的 剪力和弯矩。
【解】 1)求支座反力。 由梁的平衡方程求得支座A、B处的反力为
得 M2= FA4 m F12 m =10 kN4 m10 kN 2 m=20 kNm 由计算结果知,M2为正弯矩。
材料力学习题及答案4-6

第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。
()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。
()简支梁上向下的集中力对任意横截面均产生负弯矩。
()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。
()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。
()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。
()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。
()梁纯弯曲时中性轴一定通过截面的形心。
()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。
()图示梁弯矩图的B点是二次抛物线的顶点。
()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。
()(M图)下列三种斜梁A截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。
()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。
()一端(或两端)向支座外伸出的简支梁叫做外伸梁。
()##√悬臂梁的一端固定,另一端为自由端。
()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。
()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。
()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。
()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。
()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 梁弯曲时横截面上的内力--剪力和弯矩
一、用截面法求梁的内力
mALeabharlann BxmFl
a)
M
FB
M
B
F
b)
如图(7-3a)所示,为了求出
x FQ F c)
FQ′
M′
l-x d)
图7-3
梁横截面m-m上的内力,在 m-
FB
m
MB 处将梁断开,取左段梁为研究对
象,由平衡方程可求得
∑Fy=0 F – FQ =0
梁各指定截面的剪力和弯矩。
解 (1)求梁支座的约束力
取整个梁为研究对象,画受力图列平衡方程求解得
1 23 45
M
D
1
A
C
FAM 5 C
B
a △ △ C△ △
FB
2a
2a 2a
图7-5
∑MB( F )=0
-FA×4a-MC+q×2a×5a=0
7qa
得
FA= 4
∑Fy=0 FB+FA-q×2a=0
qa
3-3截面:取3-3截面左段梁计算,得
FQ3
q 2a
FA
2qa
7qa 4
qa 4
M 3 q 2a a 2qa2
4-4截面:取4-4截面右段梁计算,得
FQ4
FB
qa 4
M
4
FB
2a M
C
qa2 2
3qa2
5qa2 2
5-5截面:取5-5截面右段梁计算,得
FQ5
FB
qa 4
M
5
F B
2a
qa2 2
由以上计算结果可以看出:
1) 集中力作用处的两侧临近截面上的弯矩相同,但剪力
不同,说明剪力在集中力作用下,产生了突变,突变的幅值
等于集中力的大小。 2)集中力偶作用处的两侧临近截面上的剪力相同,说明
弯矩在集中力偶作用下产生了突变,突变的幅值等于集中力
偶矩的大小。 3)由于集中力的作用截面上和集中力偶的作用截面上剪
得
FB= 4
(2)求各指定截面上的剪力和弯矩
1-1截面:由1-1截面左段梁上外力的代数和求得该截面的
剪力为
FQ1= -qa
由1-1截面左段梁上外力对截面形心力矩的代数和求得该
截面的弯矩为
M
1
qa
a 2
qa2 2
2-2截面: 取2-2截面左段梁计算,得
FQ2 q 2a 2qa
M 2 q 2a a 2qa2
三、横截面上剪力和弯矩的计算 截面上的剪力和弯矩的求法为:任意截面上的剪力等于该 截面左段梁或右段梁上所有外力的代数和 ; 任意截面上的弯 矩,等于截面左段梁或右段梁上所有外力对截面形心力矩的代 数和。
例7-1 外伸梁DB受力如图7-5所示。已知均布载荷集度
为
q界面,截,集即中力→偶0;M同C=样34q-a42与。5图-5中截2面-2为与C3点-3处截的面临称界为截A点面处。的试临求
左侧面
梁段
右侧面 左侧面
FQ
FQ
FQ
dx a)
左侧面
右侧面 左侧面
M
M
M
dx b)
图7-4
取负号。取右段梁
右侧面
FQ
为研究对象时,向
dx
下的外力取正号;
向上的外力取负号。
右侧面
2、计算弯矩时
M
取左段梁为研
dx
究对象时,对截面
形心产生顺时针转
动效应的外力矩(包括力偶矩)取正号;反之取负号。
取右段梁为研究对象时,对截面形心产生逆时针转动效应 的外力矩(包括力偶矩)取正号;反之取负号。
得
FQ = F
这个作用线平行于横截面的内力称为剪力,用FQ表示。
由平衡方程还可求得
∑Mc(F ) = 0
M – FX = 0
得
M = Fx
这个作用平面垂直于横截面的内力偶的力偶矩称为弯矩,
用M表示。式中矩心C 是横截面的形心。
二、剪力FQ和弯矩M的正负号规定
1、计算剪力时
取左段梁为研究对象时,向上的外力取正号;向下的外力