统计学原理第6章:假设检验

合集下载

6 假设检验

6 假设检验




常用的α 值为0.01, 0.05, 0.1
由研究者事先确定。
拒绝域 1/2 1 - 接受域
拒绝域 1/2
临界值
H0
临界值
假设检验的步骤

根据问题要求提出 原假设(H0 )和备择假设(H1); 确定适当的检验统计量及相应的抽样分布;

计算检验统计量的值;

选取显著性水平,确定原假设的接受域和拒绝域; 作出统计决策。

举例2

某品牌洗发水在产品说明书中称:平均净含 量不少于500ml。相关机构要通过抽检其中 一批产品来验证是否属实。试陈述用于检验
的原假设和备择假设。

设该品牌洗发水的平均净含量真值是μ。 如果μ<500,表明说明书的内容不属实。

H0 :μ ≥ 500 (净含量符合说明书)
H1 :μ < 500 (净含量不符合说明书)
举例3

一家研究机构估计,某城市中家庭拥有汽车 的比率超过30%。为验证这一估计是否正确, 该机构随机抽取了一个样本进行检验。试陈
述用于检验的原假设和备择假设。

设该城市家庭拥有汽车的比率真值是 p。 研究者想收集证据予以证明:比率不超过30% H0 :p ≤ 30% (比率不超过30%)

H1 :p > 30% (比率超过30%)
例题

一种罐装饮料每罐的容量是255ml,标准差是
5ml。为检验每罐容量是否符合要求,质检人员
在某天的产品中随机抽取40罐进行检验,测得平 均容量为255.8ml。取显著性水平 =0.05,检 验该天生产的饮料容量是否符合标准要求。

设饮料的平均容量为μ。 H0 :μ = 255 (容量符合要求) H1 :μ≠255 (容量不符合要求)

第六章假设检验基础PPT课件

第六章假设检验基础PPT课件

❖假设检验的原理: 假设检验的基本思想是反证法和小
概率的思想
❖反证法思想:首先提出假设(由于未经检验是否成立,
所以称为无效假设),用适当的统计方法确定假设
成立的可能性大小,如果可能性小,则认为假设不
成立,拒绝它;如果可能性大,还不能认为它不成立
❖小概率思想:是指小概率事件在一次随机试验中认为
基本上不会发生
一、一组样本资料的t 检验(one sample/group t-test)
现有取自正态总体N(μ,σ2)的、容量为n 的一份 完全随机样本。 目的:推断该样本所代表的未知总体均数µ与已知总体 均数µ0是否相等已知总体均数µ0是指标准值,理论值 或经大量观察所得的稳定值。
n136135
3. 确定P值
指从H0规定的总体中随机抽得等于及 大于(或等于及小于)现有样本获得
的检验统计量值的概率。
4. P值的意义:如果总体状况和H0一致,统计量获 得现有数值以及更不利于H0的数值的可能性(概率) 有多大。
5.
t0 .2 (3 5 ) 50 .68 t 2 t0 .2 (3 5 ) 5得 P 0 .25
H0一般设为某两个或多个总体参数 相等,即认为他们之间的差别是由 于抽样误差引起的。H1的假设和H0 的假设相互对立,即认为他们之间 存在着本质的差异。H1的内容反映 出检验的单双侧。
单双侧的确定: 一是根据专业知识,已知东北某县囱
门月龄闭合值不会低于一般值; 二是研究者只关心东北某县值是否高
于一般人群值,应当用单侧检验。 一般认为双侧检验较为稳妥,故较为
目的要求选用不同的检验方法。
4、确定P值: P值是指由H0所规定的总体中做随机抽
样,获得等于及大于(或等于及小于)现 有统计量的概率。当求得检验统计量的值 后,一般可通过特制的统计用表直接查出P 值。

第6章-假设检验课件

第6章-假设检验课件

3. 第Ⅰ类错误(错误)
原假设为正确时拒绝原假设
第Ⅰ类错误的概率记为,被称为显著性水平
2. 第Ⅱ类错误(错误)
原假设为错误时未拒绝原假设
第Ⅱ类错误的概率记为
6 - 17
2008年8月
统计学
STATISTICS (第三版)
两类错误的关系
和的关系就像 翘翘板,小就 大, 大就小
你不能同时减 少两类错误!
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
6-4
2008年8月
第 6 章 假设检验
6.1 假设检验的基本原理
6.1.1 怎样提出假设? 6.1.2 怎样做出决策? 6.1.3 怎样表述决策结果?
6.1 假设检验的基本原理 6.1.1 怎样提出假设?
H1 : 某一数值 H1 : 某一数值 H1 : <某一数值
6 - 10
2008年8月
统计学
STATISTICS (第三版)
双侧检验与单侧检验
1. 备择假设没有特定的方向性,并含有符号 “”的假设检验,称为双侧检验或双尾 检验(two-tailed test)
2. 备择假设具有特定的方向性,并含有符号 “>”或“<”的假设检验,称为单侧检验或 单尾检验(one-tailed test)
2. 当不拒绝原假设时,我们称样本结果是统 计上不显著的
6 - 32
2008年8月
第 6 章 假设检验
6.2 一个总体参数的检验
6.2.1 总体均值的检验 6.2.2 总体比例的检验 6.2.3 总体方差的检验
统计学
STATISTICS (第三版)

假设检验的原理是什么

假设检验的原理是什么

假设检验的原理是什么
假设检验的原理是基于统计学原理和概率论的一种做法。

它用于判断一个样本所代表的总体是否满足某个给定的假设,即根据观察到的样本数据推断总体的真实情况。

假设检验的过程通常包括以下步骤:
1. 建立原假设(H0)和备择假设(H1):原假设是针对总体参数所提出的某种假设,备择假设是对原假设的补集。

通常,原假设是一种默认假设,而备择假设是我们想要得到支持的假设。

2. 选择合适的统计量:统计量是根据样本数据计算得出的一个数值,它可以用于推断总体参数的情况。

3. 设定显著性水平:显著性水平是在进行假设检验时所容许的犯错误的概率。

通常,常用的显著性水平是0.05或0.01。

4. 计算样本数据的统计量,并进行假设检验:根据样本数据计算得出统计量的值,然后将其与预先设定的临界值进行比较,以决定是否拒绝原假设。

5. 得出结论:根据计算结果,对原假设的拒绝或接受进行判断并给出相应的结论。

假设检验的目的是通过统计推断的方法来对总体的均值、方差等参数进行推断和判断。

它在科学研究、质量控制等领域中得到广泛应用。

通过假设检验可以帮助我们进行科学决策,并得出对总体参数的信心区间和推断结果。

假设检验《统计学原理》课件

假设检验《统计学原理》课件
图b
X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,

第六部分假设检验

第六部分假设检验
假设Z分布为正态, 则 ( Z ) 1 P ( Z Z ) 如经抽样所获样本的

Z
接受域
统计量Z Z , 则就拒 绝原假设H 0 , 反之, Z Z , 则应接受原假 设H 0
拒绝域
第六部分 假设检验
四、统计检验中的名词 5、双边检验和单边检验
1)双边检验 如果拒绝域选择为统计量分布的两侧, 那么, 当显著性水平为时, 每侧拒 绝域的概率应各为 / 2.现在假定所用统计量分布以0点为对称, 则临界值 Z / 2和显著性水平有如下的关系式 : P( Z Z / 2 ) 双边检验的假设如下 : H 0 : 0 H1 : 0 若 Z Z / 2 , 则应拒绝H 0 ; 若 Z Z / 2 , 则应接受H 0
10 C10 如果H 0成立,P( 10) 10 10 7 C100
抽10人都为非本地人的概率极小, 而这样的小概率事件在 现实中发生了, 只能拒绝原假设, 接受备择假设。
第六部分 假设检验
四、统计检验中的名词 1、假定 在运用各种统计技术时,首先需要假定,例如总体 是否要求满足正态分布或其他形态的分布,总体间的方 差是否要求相等,或抽样是否要求独立等。除了这些具 体要求外,还有一个不言而喻的假定,那就是抽样必须 是随机抽样。
第六部分 假设检验
五、假设检验的步骤 1、根据实际问题作出假设。包括原假设 H 0和备择假设 H1 两部分; 2、根据样本构成合适的、能反映 H 0 的统计量,并在 H 0 条件下确定统计量的分布; 3、根据问题的需要,给出小概率 的大小,并求出拒 绝域和临界值; 4、根据上述检验标准,用样本统计量的观测值进行判 断。若样本统计量的值落入拒绝域,则拒绝 H 0 ,否则 接受 H 0

卫生统计学课件_第六章_假设检验

16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

第6章 假设检验


2
2
n2 7.5 2 / 120 6.3 2 / 153 0.8533
u
X1 X 2 s X1X 2

139.9 143.7 0.8533
4.4353 u 0.05 2.58
P<0.01,差别有统计学意义,可认为该市1993年12岁男童平均身高比1973年高。
假设检验应注意的问题
t 检 验
样本均数与总体均数的比较

目的:推断该样本是否来自某已知总体; 样本均数代表的总体均数与0是否相等。

总体均数0一般为理论值、标准值或经大量观察所得并为人们接
受的公认值、习惯值。

解决思路:

区间估计

判断样本信息估计的总体均数之可信区间是否覆盖已知的 总体均数0 ?若不覆盖,则可推断该样本并非来自已知均 数的总体。
样本信息不支持H0,便拒绝之并接受H1,否则不拒绝H0 。
假设检验的基本步骤

建立假设 确定检验水准 计算检验统计量 计算概率P 结论

当P≤ 时,拒绝H0,接受H1,差别有统计学意义。
当P> 时,不拒绝H0,差别尚无统计学意义。
不论,拒绝拒绝H0,还是不拒绝H0都可能范错误。
同?
μ0 =132(g/L)
n=25
? =
μ
X 150 ( g / L) S 16.5( g / L)
已知总体
未知总体

目的:推断病人的平均血红蛋白(未知总体均
数)与正常女性的平均血红蛋白(已知总体均
数0)间有无差别
μ =μ0 ?
X 0 150 132 18

手头样本对应的未知总体均数 μ等于已知总体均数μ0,

假设检验的统计学名词解释

假设检验的统计学名词解释统计学是一门研究收集、整理、分析和解释数据的科学。

而在统计学中,假设检验是一种重要的统计方法,用于检验研究中的假设是否符合实际情况。

本文将对假设检验进行详细解释,并探讨其在统计学中的应用。

一、假设检验的概念和基本原理假设检验是通过对样本数据进行统计分析来对某个总体参数的假设进行验证的方法。

在进行假设检验时,我们首先提出一个原假设(H0)和一个备选假设(H1),然后根据样本数据的结果来判断哪个假设更加可信。

原假设通常是对问题的一种默认或无效的假设,而备选假设是我们希望证明的假设。

通过比较样本数据与原假设之间的差异,我们可以得出结论,支持或拒绝原假设。

二、假设检验的步骤和方法进行假设检验通常需要遵循以下步骤:1. 根据问题的实际背景,确定原假设和备选假设。

2. 收集样本数据,并计算样本统计量,如均值、标准差等。

3. 确定检验统计量,如t值、F值等。

这些统计量可以帮助我们评估样本数据与原假设的一致性。

4. 设置显著性水平α,即检验的临界值。

这个值表示我们在拒绝原假设时所允许的错误的概率。

5. 根据计算出的检验统计量和显著性水平,得出检验结果。

如果p值小于显著性水平,我们可以拒绝原假设;否则,我们接受原假设。

在假设检验中,常用的方法包括:1. 单个总体均值检验:用于检验一个总体均值是否等于一个给定的值。

2. 两个总体均值检验:用于比较两个总体均值是否存在显著差异。

3. 方差分析:用于比较两个或多个总体均值是否存在显著差异。

4. 卡方检验:用于检验观察值与理论值之间的差异是否显著。

5. 相关分析:用于分析两个变量之间是否存在相关性。

三、假设检验的应用领域假设检验在各个领域中都有广泛的应用,以下是其中几个典型的应用领域:1. 医学研究:用于判断某种治疗方法的有效性,比如新药是否比现有药物更好。

2. 工程质量控制:用于判断生产过程的稳定性和统计规律性。

3. 金融风险评估:用于评估投资组合的风险和收益。

大学统计学 第6章 假设检验与方差分析

18
35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当P>α时,不拒绝原假设。
16/63
3. 假设检验的两类错误
(1)两类错误的含义
实际情况 决策结论 H0为真
第六章 假设检验
H0为假 第Ⅱ类错误(取伪错误)(概 率为 )
不拒绝H0
正确决策(概率为

拒绝H0
第Ⅰ类错误(弃真错误)(概 率为 )
正确决策(概率为

17/63
3. 假设检验的两类错误
3. 假设检验的两类错误 4. 假设检验与参数估计的关系
3/63
1. 假设检验的基本思想
(1)假设检验的概念
假设就是对总体参数所提出的陈述。
参数假设检验 非参数假设检验
第六章 假设检验
(2)假设检验的核心问题
是如何利用样本信息进行推断或检验,基本依据是概率原理, 小概率原理即为小概率事件在一次实验中几乎是不可能发生 的,如果小概率事件在一次实验中便发生了,则我们有理由 拒绝所做的假设。
0.05、 0.01 0.10、
13/63
2. 假设检验的步骤
(4)确定检验规则,进行统计决策
临界值规则
第六章 假设检验
临界值规则是根据检验统计量的取值与给定显著性水平下
的临界值进行对比进行统计决策的方法。
双侧检验:检验统计量的值>右侧统计量的值,或检验 统计量的值<左侧临界值,拒绝原假设; 左侧检验:检验统计量的值<左侧临界值,拒绝原假设。 右侧检验:检验统计量的值>右侧临界值,拒绝原假设。
第六章
假设检验
学习目标
第一节 假设检验的基本原理

假设检验的相关概念和基本步骤
第二节 单总体参数的假设检验 第三节 两总体参数的假设检验
2/63
第一节 假设检验的基本原理 学习要点


第六章 假设检验
1. 假设检验的基本思想
2. 假设检验的步骤
H 0 : 0 H1 : 0 双侧检验 H 0 : 0 H1 : 0 右侧检验 H 0 : 0 H1 : 0 左侧检验
第六章 假设检验
7/63
2. 假设检验的步骤
例6-1
第六章 假设检验
分析:质检人员想要搜集证据支持“机器生产不正常”的假设 ,故,
一是检验统计量中必须含有要检验的总体参数 二是检验统计量的概率分布必须是明确可知的
标准化检验统计量
11/63
2. 假设检验的步骤
第六章 假设检验
样本均值与样本比例服从正态分布,其期望等于 总体的参数值,方差等于总体方差的1/n
x

2 N , n
( 1 ) p ~ N , n
(2)两类错误的影响因素与关系
影响因数
第六章 假设检验
第Ⅰ类错误:显著性水平α;α越高则犯第Ⅰ类错误的概 率越大。 2 第Ⅱ类错误:显著性水平α、总体方差 和样本容量n; 显著性水平α越小、总体方差 2越大、样本容量n越小,犯 第Ⅱ类错误的概率越大。 关系 在其他条件不变的条件下,两类错误存在此消彼长 的关系,即减小α必然导致β增大,反之,减小β必然 导致α增大。
14/63
2. 假设检验的步骤
还可表示为:
第六章 假设检验
15/63
2. 假设检验的步骤
P值规则
第六章 假设检验
P值是一个概率值,其大小等于根据样本数据计算得 到的检验统计量取值两边(双侧检验)或一边(单侧 检验)的面积,也被称为观察到的显著性水平 当P<α时,则认为小概率事件发生,拒绝原假设;
18/63
3. 假设检验的两类错误
第六章 假设检验
在实际应用中,主要考虑犯第Ⅰ类错误的成本高低,如果
犯第Ⅰ类错误的成本较高,α会取一个比较小的值,如果犯 第Ⅰ类错误成本不是太高,通常α会取一个比较大的值。 控制犯第Ⅰ类错误概率的假设检验也被称为显著性检验。
19/63
4.假设检验与参数估计的关系
2. 假设检验的步骤
例6-3
第六章 假设检验
分析:以前的产品废品率在1%以上,改进生产工艺可以使产 品废品率下降是需要支持的命题,故,
H0 : 1%
H1 : 1%
予以否定的命题 予以支持的命题
10/63
2. 假设检验的步骤
(2)检验统计量
检验统计量需要满足以下两个条件

第六章 假设检验
原假设和备择假设设立原则
第六章 假设检验
原假设一般为原有的、传统的观点或结论,而备择假 设则为新的、可能的、猜测的新命题 原假设也称为零假设。原假设与备择假设互斥,不拒 绝原假设意味着放弃备择假设,拒绝原假设意味着接 受备择假设。
6/63
2. 假设检验的步骤
假设检验的分类
双侧检验和单侧检验
H0 : 10
H1 : 10
予以否定的命题 予以支持的命题
8/63
2. 假设检验的步骤
例6-2
第六章 假设检验
分析:产品的使用寿命没有超过5000小时是原来的情况,在
没有充分事实证明前不应该轻易否定,故,
H 0: 5000
予以否定的命题 予以支持的命题
H1: 5000
9/63
标准化后的样本统计量服从标准正态分布
x

~ N 0, 1
p
(1 )
n
~ N 0, 1
n
记服从标准正态分布的检验统计量为Z.
12/63
2. 假设检验的步骤
(3)给定显著性水平
第六章 假设检验
事先确定的能够承受的一次实验即发生的最大 概率值,记为 显著性水平的大小没有统一规定 研究的问题越重要、对结论的准确性要求越高, 则显著性水平越小。
第六章 假设检验
联系——均以抽样分布理论为理论依据 在获得样本均x 值 与给定置信水平1-α的条件下, 可计算得到总体参数的置信区间,该置信区间可表 z x z 述为[ ]; n , n
/2
/2
假设检验需要首先对总体参数提出假设,比如,原 假设为H : ,假设检验的显著性水平亦为α;
(3)假设检验又被称为显著性检验。
4/63
2. 假设检验的步骤
步骤:
提出假设,包括原假设和备择假设;
构造合适的检验统计量及其分布;
第六章 假设检验
对于给定的的显著性水平,确定拒绝域和临界值;
根据样本数据计算检验统计量的数值并作出决策。
5/63
2. 假设检验的步骤
(1)原假设与备择假设
相关文档
最新文档