断口失效分析实验报告
金属--断裂与失效分析报告刘尚慈

金属--断裂与失效分析报告刘尚慈金属断裂与失效分析(尚慈编)第一章概述失效:机械装备或机械零件丧失其规定功能的现象。
失效类型:表面损伤、断裂、变形、材质变化失效等。
第二章金属断裂失效分析的基本思路§2—1 断裂失效分析的基本程序一、现场调查二、残骸分析三、实验研究(一)零件结构、制作工艺及受力状况的分析(二)无损检测(三)材质分析,包括成分、性能和微观组织结构分析(四)断口分析(五)断裂力学分析以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。
K I=Yσ(πα)1/2脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π中低强度材料,当断裂前发生大围屈服时,按弹塑性断裂力学提出的裂纹顶端开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时:δ=(8σsα/πE)ln sec(πσ/2σs)不发生断裂的条件为:δ<δC(临界开位移)J积分判据:对一定材料在大围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。
开型裂纹不断裂的判据为:J<J ICK IC——断裂韧性;K ISCC——应力腐蚀门槛值(六)模拟试验四、综合分析分析报告的涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。
五、回访与促进建议的贯彻§2—2 实效分析的基本思路一、强度分析思路二、断裂失效的统计分析三、断裂失效分析的故障树技术第三章金属的裂纹§3—1 裂纹的形态与分类裂纹:两侧凹凸不平,偶合自然。
裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。
螺栓断口失效分析

1、解理断裂(大多数情况下为脆性断裂)2、剪切断裂1、静载断裂(拉伸断裂、扭转断裂)2、冲击断裂3、疲劳断裂1、低温冷脆断裂2、静载延滞断裂(静载断裂)3、应力腐蚀断裂4、氢脆断裂断口微观形貌(图3/4/5/6),断口呈脆性特征,表面微观形貌为冰糖状沿晶断裂,芯部为沿晶+准解理断裂,在断裂的晶面上有细小的发纹状形貌。
结论:零件为沿晶断裂的脆性断口。
断口呈脆性特征,表面微观形貌沿晶断裂,芯部为准解理断裂;终断区(图4)微观为丝状韧窝形貌,为最终撕裂区结论:断口为脆性断裂宏观断口无缩颈现象且微观组织多处存在剪切韧窝形貌,为剪切过载断裂断口。
综上分析:零件为氢脆导致的断裂,氢进入钢后常沿晶界处聚集,导致晶界催化,形成沿晶裂纹并扩展,导致断面承载能力较弱,最终超过其承载极限导致断裂典型氢脆断口的宏观形貌如右图所示:氢脆又称氢致断裂失效是由于氢渗入金属内部导致损伤,从而使金属零件在低于材料屈服极限的静应力持续作用下导致的失效。
氢脆多发生于螺纹牙底或头部与杆部过渡位置等应力集中处。
断口附近无明显塑性变形,断口平齐,结构粗糙,氢脆断裂区呈结晶颗粒状,一般可见放射棱线。
色泽亮灰,断面干净,无腐蚀产物。
应力腐蚀也属于静载延滞断裂,其断口宏观形貌与一般的脆性断口相似,断口平齐而光亮,且与正应力相垂直,断口上常有人字纹或放射花样。
裂纹源区、扩展区通常色泽暗灰,伴有腐蚀产物或点蚀坑,离裂纹源区越近,腐蚀产物越多。
应力腐蚀断面最显著宏观形貌特征是裂纹源表面存在腐蚀介质成分贝纹线是疲劳断口最突出的宏观形貌特征,是鉴别疲劳断口的重要宏观依据。
如果在宏观上观察到贝壳状条纹时,在微观上观察到疲劳辉纹,可以判别这个断口属于疲劳断口。
断口失效分析实验报告

表1 所观察金属断口的宏观形貌特征表2 所观察金属断口的微观形貌特征图1 D1断口样品宏观图像图2 D2断口样品宏观图像图3 D3断口样品宏观图像图4 D3断口样品宏观图像(3)复制所观察的各断口各区域的微观形貌图;指出其微观特征。
图5 D1断口样品纤维区特征:图5显示了D1断口中心部位纤维区即本断口的裂纹源的显微形貌:由等轴韧窝组成,大多数韧窝较小、较浅,此区域属韧性断裂。
图6 D1断口样品放射区特征:图6中左图显示了放射区放射状的韧窝台阶;右图显示了放射区的显微形貌:由大量较大的剪切韧窝与滑移平直区、撕裂棱等混合组成。
此区域属韧性断裂。
图7 D1断口样品剪切唇区特征:图7中左图显示了D1样品剪切唇区的显微形貌:非等轴、较浅的剪切韧窝。
右图显示了大韧窝底部的显微形貌:带有涟波纹的滑移区。
此区域属韧性断裂。
图8 D2断口样品结晶区特征:图8显示了D2样品中心部分结晶区的显微形貌,其显现出平直的晶粒外形,晶界面上有大量细小的韧窝或有细长的裂纹。
此区域属沿晶断裂、脆性断裂。
图9 D2断口样品解理区特征:图9显示了D2样品边缘部分解理区的显微形貌:由平齐的解理面以及解理台阶、河流花样等组成。
此区域属穿晶断裂、脆性断裂。
图10 D3断口样品裂纹源区特征:图10显示了D3样品裂纹源的形貌:最下部为V形缺口处的连波纹;左图次下部(右图中部)为裂纹源区;左图上部为裂纹扩展区。
图11 D3断口样品纤维区特征:图11显示了D3样品纤维区的形貌:由小、多的撕裂韧窝组成,韧窝成行排列,每排韧窝的排列方向与裂纹扩展方向一致。
此区域细小韧窝居多,属脆性断裂。
图12 D3断口样品放射区放射花样特征:图12显示了D3样品放射区放射花样形貌。
放射花样与裂纹扩展方向一致。
图13 D3断口样品放射区显微形貌特征:图13显示了D3样品放射区的显微形貌:由舌状花样、河流花样、解理台阶、滑移平直区及撕裂棱等混合组成,此区域属脆性断裂。
图14 D3断口样品剪切唇区特征:图14显示了D3样品剪切唇区的显微形貌:由平而浅、倾斜的滑移韧窝、撕裂棱等组成。
断裂分析报告

M10-45H内六角紧定螺钉断裂分析据客户反映,由本公司供应的M10-45H紧定螺钉,安装过程中发生故障。
现状:M10-45H内六角紧定螺钉,在密封锁紧螺母安装过程中发生断裂;安装过程:在部件上指定部位使用43~48N.m扭矩旋入紧定螺钉(作为限位螺钉使用),然后,在紧定螺钉露出端使用43~48N.m的终拧扭矩旋入密封锁紧螺母并拧紧,防止螺钉与基体之间的间隙造成介质渗漏。
一,失效件检测分析:1,断口形貌宏观观察:断面基本与轴线垂直,颜色灰色,颗粒细小均匀;放大10倍进行观测,未见目测可见原始裂纹。
2,机械性能检测:沿轴线使用线切割方式制样,检测了纵向剖面的机械性能。
检测特性表面硬度芯部硬度芯部硬度未脱碳层深度标准要求HV580max HV450~560 HRC45~53 0.806min实测结果540HV0.3 530HV0.3 HRC49~50.5 无脱碳/渗碳机械性能符合GB3098.3对45H级螺钉的机械性能要求。
3,金相检测分析:沿轴线使用线切割方式制样,检测了纵向剖面的金相组织。
如下图图1和图2。
图1芯部金相x500芯部金相组织:回火马氏体+回火屈氏体图2螺纹金相x200螺纹部位金相:无脱碳层或渗碳层4,化学成分分析:合金钢SCM435: 0.35%C, 0.21%Si, 0.70%Mn, 0.013%P, 0.007%S, 1.04%Cr, 0.185%Mo符合GB3098.3对45H级螺钉的材质要求。
失效件检测分析表明,该产品机械性能和使用材料完全符合GB3098.3标准要求二,断裂原因分析:对失效件的机械性能检测、金相组织检测、化学成分检测结果表明,产品完全符合标准规范。
对照标准GB/T 3098.3-2000,在标准条文内第一章,标准范围,对该产品的描述,第一段有明确:本标准规定了由碳钢或合金钢制造的、在环境温度为10-35℃条件下进行试验时,螺纹公称直径为1.6- 24m m的紧定螺钉及类似的不受拉应力的紧固件机械性能。
焊接失效分析报告

焊接失效分析报告1. 引言焊接是一种常用的连接金属的方法,但在实际应用中,焊接接头可能会发生失效。
焊接失效可能会导致结构强度降低、漏气、裂纹等问题,给工程项目带来严重的安全隐患。
本报告旨在对焊接失效进行分析,并提出相应的解决方案。
2. 焊接失效类型根据焊接接头失效的特征和原因,我们可以将焊接失效分为以下几种类型:2.1 强度失效强度失效是指焊接接头的强度无法达到设计要求,无法承受工作负荷而发生破坏。
强度失效可能由焊接过程中的缺陷、焊接材料的选择不当、焊接接头的设计错误等因素引起。
2.2 漏气失效漏气失效是指焊接接头在使用过程中发生气体泄漏。
漏气失效可能由焊接过程中的不完全熔合、气孔、裂纹等缺陷引起。
2.3 腐蚀失效腐蚀失效是指焊接接头由于与外界环境的接触而发生腐蚀,导致焊接接头的性能下降。
腐蚀失效可能由焊接材料的选择不当、焊接接头表面处理不当等原因引起。
3. 焊接失效分析方法为了准确分析焊接失效并找出根本原因,我们可以采用以下方法:3.1 目视检查首先,我们可以对焊接接头进行目视检查,寻找明显的焊接缺陷,如气孔、裂纹、未熔合等。
通过目视检查,可以初步判断焊接失效类型。
3.2 金相分析金相分析是一种常用的材料分析方法,可以通过制备金属样品,并利用显微镜观察组织结构、晶粒大小等信息,从而判断焊接接头是否存在组织缺陷。
3.3 断口分析断口分析是一种通过观察焊接接头破坏面形态来判断焊接失效原因的方法。
不同类型的焊接失效,其断口形态也有所不同。
通过断口分析,可以初步确定焊接失效的原因。
3.4 化学分析化学分析是一种通过对焊接接头进行成分分析来判断焊接失效原因的方法。
通过化学分析,可以检测焊接接头中的杂质含量,从而找出导致焊接失效的原因。
4. 焊接失效解决方案根据焊接失效分析结果,我们可以采取以下解决方案:4.1 强度失效解决方案对于强度失效,我们可以采取增加焊接接头的尺寸、增加焊接材料的强度等方式来提高焊接接头的强度。
端子断裂失效分析

端子断裂失效分析美信检测失效分析实验室1. 案例背景失效样品为某汽车接地线束的固定端子,生产流程为:原料铜管→裁剪→冲压成型→表面镀锡→装配→振动试验(19万次)→断裂;其可靠性测试中6个成品经振动试验19万次后其中一个断裂,委托方要求分析该断裂失效端子的失效机理,并给出改进建议。
2. 分析方法简述外观检查中可观察到失效样品断裂的2部分能无缝对接,断裂位置在冲压形成的台阶折线处。
断裂位置正常样品失效样品将失效样品断口用超声波清洗干净,然后在SEM下放大观察断口形貌,高倍下发现断口存在明显的疲劳条带;低倍下观察到断口两侧低中间高,为两侧先开裂再向中间扩展形成的中间凸起断口形貌,结合据委托方提供的样品振动19万次后断裂信息,判断样品为双向高周疲劳断裂模式。
中间凸起失效样品先去镀层,再进行化学成分分析,结果表明失效样品材质为纯铜,材料不存在异常。
失效样品和正常样品分别镶样,进行金相分析,失效样品腐蚀前金相观察未发现明显缺陷,腐蚀后可观察到大变形区域的纤维状α相,小变形量区域为α相组织,伴有较多孪晶;正常样品腐蚀前金相观察发现样品表面的折弯处存在微裂纹,裂纹填充满锡,推断裂纹为冷加工成型造成的,腐蚀后可观察到金相组织为α相组织,伴有较多孪晶。
纤维状α相铜管内壁裂纹从断口分析可知,样品断口形貌主要为高周期疲劳断裂特征,根据客户提供的震动试验资料,样品试验过程是振幅为12mm左右的周期振动,19万次后断裂,符合低应力高疲劳周期的双向高周疲劳断裂特征,两侧裂纹无锡填充,说明为镀锡后开裂,为冷机加工造成应力折叠形成的开裂。
从化学成分可知失效样品的铜含量在99.99%,材质为纯铜,材料不存在异常。
从金相图片可知,失效样品与正常样品的金相组织都为α相组织,伴有较多孪晶,为冷机加工残留内应力较大的特征;正常样品可观察到填充锡的微裂纹,为冷机加工缺陷,这些表面微裂纹可能会成为开裂源。
4. 结论样品失效的主要原因为冲压成型形成的台阶折弯处变形量大,伴有大量残余应力,在交替循环弯曲应力作用下成为开裂源继而断裂,为双向高周疲劳断裂模式;高周疲劳断裂一般为偶然现象,不会存在大批量问题。
实验一脆性断裂和韧性断裂断口失效分析

实验一脆性断裂和韧性断裂断口失效分析一、实验目的了解模具脆性断裂和韧性断裂断口失效分析步骤以及模具脆性断裂和韧性断裂断口的宏观和微观特征。
二、实验内容及步骤1、模具脆性断裂和韧性断裂宏观断口的观察(1)操作前的准备工作a.选定失效模具的待分析部位;b.选定并切割试样、清洗并擦拭干净。
(2)操作步骤a.用放大镜或低倍显微镜观察脆性断裂和韧性断裂断口;b.记录上述所观察到的脆性断裂和韧性断裂宏观断口形貌。
2、模具脆性断裂和韧性断裂微观断口的观察(1)操作前的准备工作a.选定失效模具的待分析部位;b.选定并切割试样、将试样严格清洗干净;(2)操作步骤a.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到工作状态;b.用扫描电子显微镜观察脆性断裂和韧性断裂断口c.记录上述所观察到的脆性断裂和韧性断裂微观断口形貌。
三、实验设备器材1、放大镜、低倍显微镜、扫描电子显微镜、试样切割机、无水酒精、丙酮2、脆断失效模具和韧性断裂失效模具各一副。
四、实验注意事项1、实验前,试样表面要严格请洗;2、使用显微镜时要细心操作,以免损坏机件。
3、遇故障及时报告指导教师。
实验二模具表面磨损失效分析一、实验目的了解模具磨损失效分析步骤以及模具磨损表面的宏观和微观特征。
二、实验内容及步骤1、模具磨损表面宏观形貌的观察i.操作前的准备工作1.选定失效模具的待分析部位;2.清洗并擦拭干净。
ii.操作步骤1.用放大镜或低倍显微镜观察模具磨损表面形貌;2.记录上述所观察到的磨损表面形貌。
2、模具磨损表面微观形貌的观察i.操作前的准备工作1.选定失效模具的待分析部位;2.将试样严格清洗干净;ii.操作步骤1.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到工作状态;2.用扫描电子显微镜观察模具(或40Cr)磨损表面微观形貌;3.记录上述所观察到的模具(或40Cr)磨损表面微观形貌。
3、磨损失效机理分析ⅰ根据模具表面磨损失效的宏观断口分析结果,初步判定模具磨损失效的类型和失效机理。
失效分析实验报告小结

失效分析实验报告小结引言失效分析是一种对材料、构件或设备在使用过程中发生失效的原因进行研究的技术方法。
通过详细分析失效的现象、特征以及失效的原因,可以为改进材料的性能和提高构件或设备的可靠性提供有效的依据。
本次实验旨在通过对金属薄板的失效分析,深入了解失效现象及其原因,为进一步改进材料的使用和设计提供指导。
实施过程1. 实验材料准备本次实验使用了不同材质的金属薄板作为实验样品,其中包括不锈钢、铝合金和碳钢等。
样品经过打磨和清洗后,保证表面的平整和无污染。
2. 失效模拟实验为了模拟失效情况,我们对样品进行了多个实验,包括静态负载、热循环和冲击加载等。
通过不同的实验条件和加载方式,我们可以模拟出不同的失效情况,并进行准确的分析。
3. 失效分析失效分析是实验的重点,通过对被失效样品进行显微镜观察、扫描电子显微镜分析以及力学性能测试等手段,我们对失效的样品进行了全面的分析。
结果与讨论经过实验和分析,我们得出了以下结论:1. 不同材质的金属薄板在失效时出现了不同的现象和特征。
不锈钢样品出现了明显的腐蚀和裂纹,铝合金样品则主要出现了疲劳断裂现象,而碳钢样品则表现出明显的临界应力失效。
2. 实验中发现,金属薄板在高温环境下容易发生热疲劳失效,而低温下则容易出现脆断裂。
这一点对于材料的设计和使用具有重要的指导意义。
3. 扫描电子显微镜分析结果显示,失效样品的断口表面呈现出不同的形态。
根据断口形貌,可以确定失效的类型,如拉伸断裂、剪切断裂、疲劳断裂等。
4. 失效的原因主要有外力加载、疲劳、应力集中和材料本身的缺陷等。
其中,应力集中是导致失效的主要原因之一,更好的设计和工艺可以减少应力集中,提高材料的使用寿命。
总结与展望通过本次实验,我们深入了解了失效分析的方法和步骤,并成功应用在金属薄板的研究中。
我们通过实验发现了不同材质金属薄板失效的规律和原因,并为改进材料的使用和设计提供了参考。
然而,本次实验还存在一些不足之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表1 所观察金属断口的宏观形貌特征
表2 所观察金属断口的微观形貌特征
图1 D1断口样品宏观图像图2 D2断口样品宏观图像
图3 D3断口样品宏观图像
图4 D3断口样品宏观图像
(3)复制所观察的各断口各区域的
微观形貌图;指出其微观特征。
图5 D1断口样品纤维区
特征:图5显示了D1断口中心部位纤维区即本断口的裂纹源的显微形貌:由等轴韧窝组成,大多数韧窝较小、较浅,此区域属韧性断裂。
图6 D1断口样品放射区
特征:图6中左图显示了放射区放射状的韧窝台阶;右图显示了放射区的显微形貌:由大量较大的剪切韧窝与滑移平直区、撕裂棱等混合组成。
此区域属韧性断裂。
图7 D1断口样品剪切唇区
特征:图7中左图显示了D1样品剪切唇区的显微形貌:非等轴、较浅的剪切韧窝。
右图显示了大韧窝底部的显微形貌:带有涟波纹的滑移区。
此区域属韧性断裂。
图8 D2断口样品结晶区
特征:图8显示了D2样品中心部分结晶区的显微形貌,其显现出平直的晶粒外形,晶界面上有大量细小的韧窝或有细长的裂纹。
此区域属沿晶断裂、脆性断裂。
图9 D2断口样品解理区
特征:图9显示了D2样品边缘部分解理区的显微形貌:由平齐的解理面以及解理台阶、河流花样等组成。
此区域属穿晶断裂、脆性断裂。
图10 D3断口样品裂纹源区
特征:图10显示了D3样品裂纹源的形貌:最下部为V形缺口处的连波纹;左图次下部(右图中部)为裂纹源区;左图上部为裂纹扩展区。
图11 D3断口样品纤维区
特征:图11显示了D3样品纤维区的形貌:由小、多的撕裂韧窝组成,韧窝成行排列,每排韧窝的排列方向与裂纹扩展方向一致。
此区域细小韧窝居多,属脆性断裂。
图12 D3断口样品放射区放射花样
特征:图12显示了D3样品放射区放射花样形貌。
放射花样与裂纹扩展方向一致。
图13 D3断口样品放射区显微形貌
特征:图13显示了D3样品放射区的显微形貌:由舌状花样、河流花样、解理台阶、滑移平直区及撕裂棱等混合组成,此区域属脆性断裂。
图14 D3断口样品剪切唇区
特征:图14显示了D3样品剪切唇区的显微形貌:由平而浅、倾斜的滑移韧窝、撕裂棱等组成。
大韧窝底部为带有涟波纹的滑移平直区。
此区域属韧性断裂。
图15 D4断口样品裂纹源区
特征:图15显示了D4样品裂纹源的形貌。
左图最下部:样品边缘的连波纹;左图次下部:放射线逆向收敛指向疲劳源区。
裂纹源处有小夹杂。
右图显示了D4样品裂纹源附近、裂纹稳定扩展第一阶段的显微形貌,由放射线、解理台阶、河流花样、舌状花样、早期疲劳带等组成。
此区域属脆性断裂。
图16 D4断口样品裂纹稳定扩展区
特征:图16显示了D4样品裂纹稳定扩展区第二阶段的显微形貌,由平行的疲劳条带、平行的多条二次裂纹以及放射线、解理台阶、河流花样、舌状花样等组成。
此区域属脆性断裂。
图17 D4断口样品弧形线
特征:图17中左图显示了D4样品裂纹快速扩展区弧形线的形貌,右图显示了弧形线放大后的形貌,为平行的弧形滑移带。
图18 D4断口样品裂纹快速扩展区
特征:图18显示了D4样品裂纹快速扩展区的形貌:由倾斜、稍拉长且深而大的等轴韧窝组成。
此区域属韧性断裂。
思考题答案
1对于一般情况。
疲劳应力低于材料屈服强度,因此。
在发生疲劳断裂前材料均会发生一定量的塑性变形,只是对于塑性材料来说发生塑性变形量大而相对于脆性材料来说其发生相对甚微。
2对于脆性材料而言。
长期反疲劳积聚下达到一定程度后裂纹萌生。
当其扩展超过临界扩展尺寸时、在应力作用下会迅速扩展发生脆性断裂。
如:D4。
对于塑性材料来说在载荷的长期作用下材料会通过发生变形来解放一定水平的应力,从而延缓裂纹扩展,因而在材料发生断裂以前其孕育期较长,故为韧性断裂。
如:D1。