单桩承载力计算
单桩承载力计算公式

单桩承载力计算公式经验公式法是根据实际桩基荷载测试结果和工程经验总结出来的一种估算方法。
它通过考虑侧摩阻力和桩端承载力来确定单桩的承载力。
其中,侧摩阻力是指桩身在土中受到的水平支撑力,桩端承载力是指桩端在土中所受到的垂直承载力。
常用的经验公式包括贝尔传统公式、奥古斯丁公式和桩侧阻力计算公式等。
以下是常用的几种桩基承载力经验公式:1.贝尔传统公式:Qs=α*Ap*σp其中,Qs为桩的承载力,Ap为桩身的有效横截面积,σp为土的有效侧压力,α为桩的减载系数。
2.奥古斯丁公式:Qb=α*Ap*Nc*Sc+γ*Ap*Dp*ScQs = α * Ap * qb其中,Qb为桩端的承载力,Nc为静力触探指数,Sc为静力触探标贯击数校正系数,γ为土的体积重量,Dp为桩端直径,qb为桩侧阻力。
3.桩侧阻力计算公式:qb = α1 * β * γ * Ap * Ls其中,qb为桩侧阻力,α1为桩侧阻力系数,β为桩侧土的活动土压力系数,γ为土的体积重量,Ap为桩身的有效横截面积,Ls为桩身的长度。
以上是经验公式法常用的几种计算公式,它们都能够根据桩基的参数来估算单桩的承载力。
不过需要注意的是,经验公式法是以经验数据为基础的估算方法,仅适用于一定范围内的工程情况。
对于特殊情况或精确计算,静力触探法是更为准确可靠的方法。
静力触探法是一种利用静力触探试验结果来计算单桩承载力的方法。
静力触探试验是指通过将一定载荷施加到桩上,并测量沉桩深度和反力来判断桩基承载力的试验方法。
常用的计算单桩承载力的静力触探法有挑剔集合法、剖分桩身法和直接计算法等。
1.挑剔集合法:挑剔集合法是通过触探数据的分析和比较,将不同位置处的桩体分为若干剖分段,然后根据静力触探曲线力和沉桩深度的变化规律,确定桩身各剖分段的承载力。
最后,将各剖分段承载力相加得到单桩整体的承载力。
2.剖分桩身法:剖分桩身法是将桩身分为若干剖分段,通过触探数据和剖分段的长度来确定各剖分段的承载力。
CFG桩设计计算(置换率及桩中心距公式.pdf

CFG 桩设计计算一、单桩承载力计算1、Up —桩的周长;—第i 层土极限侧阻力,按建筑桩基技术规范规定取值; h i —第i 层土厚度;q p —第i 层土极限端阻力,按建筑桩基技术规范规定取值;K —调整系数,K =2.0;2、 η—系数,取0.3~0.33;R 28—桩体28天立方体块强度;A p —桩的截面面积;单桩承载力两种计算方式中方法一主要适用于长桩,方法二适用于短桩,同时计算时取计算值较小者。
3、当用单桩静载荷试验确定单桩极限承载力标准值Ruk 后,Rk 可按下式计算: sp ukk R R γ=γsp —调整系数,宜取1.50-1.60,一般工程或桩间土承载力高、基础埋深大以及基础下桩数较多时应取低值,重要工程、基础下桩数kA q h q U R p p i i s p k ∑•+=,i s q ,pk A R R 28η=较少或桩间土为承载力较低的粘性土时应取高值。
二、复合地基承载力计算()k s p k k sp f m A mR f ,,1•−••+=βα—复合地基承载力标准值(kPa );A p —单桩截面积(m 2); α—桩间土强度提高系数,通常α=1;β—桩间土强度发挥系数;—桩间土承载力标准值(天然地基承载力标准值);三、置换率1、d —CFG 桩直径;S —桩间距;2、根据复合地基承载力公式计算。
四、桩间距桩距:一般为3-6倍桩径。
当在饱和粘性土中挤土成桩,桩距不宜小于4倍桩径。
根据桩土面积置换率计算桩中心距(s ),计算公式如下:(1)等边三角形布桩:m d s 105.1=(2)正方形布桩:k sp f ,k s f ,224/S d m π×=m d s 113.1=(3)长方形布桩:m d SS 113.11=S1—桩排距;如果桩间距已知,也可以利用此式确定面积置换率。
五、桩数确定p A mA n = 六、桩体强度计算pA R k 28R 3•≥。
(灌注桩桩基)单桩承载力计算

110
6碎块状强风化凝灰岩
180
7中风化凝灰岩
0
Qsk=
6386.29
qpk=
9000
ψ si=ψ p=(0.8/d)^1/3=
Qpk=
ψ p*qpk*Ap=
土层深度 层底标高 孔口标高 qsik*ui*li
qsik 土层深度
26.26
5
21.26
0.00
1杂填土
0(考虑负摩阻力) 5
6.3
14.96
Quk=(Qsk+Qpk)/2= 单桩承载力特征值Ra=
8357 8049.10
Quk=(Qsk+Qpk)/2= 单桩承载力特征值Ra=
9227 9226.92
180
7中风化凝灰岩
0
Qsk=
9025.86
qpk=
9000
ψ si=ψ p=(0.8/d)^1/3=
Qpk=
ψ p*qpk*Ap=
土层深度
5 6.3 9.7 4.5 4.2 7.5 1.06
0.899384092 7688.52
层底标高 孔口标高 qsik*ui*li
qsik 土层深度
26.26
21.26
采用冲孔灌注桩,取ZK16进行计算
桩径
700
混凝土强度 C30
桩径
800
混凝土强度 C30
工作条件系数γ 0 桩身强度(特征值)
0.8 3259.55
工作条件系数γ 0 桩身强度(特征值)
0.8 4257.37
qsik
1杂填土
0(考虑负摩阻力)
2粉质粘土
40
3残积砂质粘性土
45
4全风化凝灰岩
单桩竖向承载力特征值计算方法

单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94 -2008第5.2.2条公式5.2.2计算:R a=Q uk/K式中:R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K——安全系数,取K=2。
1. 一般桩的经验参数法此方法适用于除预制混凝土管桩以外的单桩。
按JGJ94-2008规范中第5.3.5条公式5.3.5计算:式中:Q sk——总极限侧阻力标准值;Q pk——总极限端阻力标准值;u——桩身周长;l i——桩周第i 层土的厚度;A p——桩端面积;q sik——桩侧第i 层土的极限侧阻力标准值;参考JGJ94-2008规范表5.3.5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0;q pk——极限端阻力标准值,参考JGJ94-2008规范表5.3.5- 2取值,用户需在地质资料土层参数中设置此值;对于摩擦桩取q pk=0;2. 大直径人工挖孔桩(d≥800mm)单桩竖向极限承载力标准值的计算此方法适用于大直径(d≥800mm)非预制混凝土管桩的单桩。
按JGJ94-2008规范第5.3.6条公式5.3.6计算:式中:Q sk——总极限侧阻力标准值;Q pk——总极限端阻力标准值;q sik——桩侧第i层土的极限侧阻力标准值,可按JGJ94-2008规范中表5.3.5-1取值,用户需 1取值,用户需在地质资料土层参数中设置此值;对于扩底桩变截面以上2d范围不计侧阻力;对于端承桩取q sik=0;q pk——桩径为800mm极限端阻力标准值,可按JGJ94-2008规范中表5.3.6- 1取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取qpk=0;ψsi,ψp——大直径桩侧阻、端阻尺寸效应系数,按JGJ94-2008表5.3.6-2取值;u——桩身周长。
3. 钢管桩单桩竖向极限承载力标准值的计算按JGJ 94-2008规范第5.3.8条公式5.3.8-1计算:式中:Q sk——总极限侧阻力标准值;Q pk——总极限端阻力标准值;q sik——桩侧第i层土的极限侧阻力标准值,可按JGJ94-2008规范中表5.3.5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0;q pk——极限端阻力标准值,可按JGJ94-2008规范中表5.3.5-2取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取q pk=0;l i——桩周第i层土的厚度;u——桩身周长;A j——空心桩端净面积面积;A p1——空心桩敞口面积;λp——桩端土塞效应系数。
500-600单桩承载力计算

滨江花园φ500/600直径
单桩承载力计算书
本计算采用:建筑地基基础设计规范(GB50007-2002)
根据甲方提供的地质勘察报告,甲方要求改用长螺旋管灌注桩,桩端进入强风化玄武岩层不小于0.5m,桩端土承载力特征值为:
对于500直径的桩q pa=3000kPa。
1,单桩竖向承载力特征值估算(式8.5.5-1):
R t=q pa A P+ u p∑q sia l i=0.252*3.14*3000+0.50*3.14*30粘土21.0 =588KN +989N
=1577KN
2,桩身砼强度应满足桩的承载力设计要求(式8.5.9):
Q≤A P f c¢c=0.252*3.14*14.3*0.6=1683KN
3,单桩承载力特征值取值:
R=Q/1.35=1683/1.35=1248KN 取(1200KN)
对于600直径的桩q pa=3000kPa。
1,单桩竖向承载力特征值估算(式8.5.5-1):
R t=q pa A P+ u p∑q sia l i=0.302*3.14*3000+0.60*3.14*30粘土21.0 =847KN +1186N
=2033KN
2,桩身砼强度应满足桩的承载力设计要求(式8.5.9):Q≤A P f c¢c=0.302*3.14*14.3*0.6=2425KN
3,单桩承载力特征值取值:
R=Q/1.35=2425/1.35=1800KN 取(1800KN)
设计:
校对:
审核:
长宇(珠海)国际建筑设计有限公司。
单桩承载力估算(PHC桩)

4
③
含黏性土粉 砂
24
0
4.6 4 5.9 5.9 5.5 3.5 2.6 2.1 3.5 5.7 5.7
5 ④ 粗砂
70
4500
0
0 3.1 3.1 0
0 4.1 0
0
0
0
6 ⑤ 圆砾
140
6000 10.8 10.7 7.5 7.5 11 11
6 10.8 10.9 10.2 10.6
7 ⑥ 墙风化泥岩
单桩竖向承载力特征值计算(PHC引孔桩兼作抗拔桩)
工程名称
南宁盛世金悦
1、计算依据:
《建筑桩基础技术规范》JGJ942008
2、单桩竖向承载力计算:
地块名称:
楼栋号
1#
《混凝土结构设计规范》GB500010-2010(2015版)
桩基类别 桩身壁厚 计算公式
层序
岩土名称
1 ① 杂填土
预应力管桩PHC-AB500(100)
取荷载效应标准组合下轴心竖向力= 1800
满足
3、抗拔验算:
抗拔系数λi 0.7
桩砼浮重度
15
N/mm2 桩土浮重度
10
kN/m3
设计参数
设计参数
群桩数n=
2
桩内直径Φ 300
桩芯混凝土强度
C30
地勘孔位编号
桩群外围周长UL
桩芯砼灌注长度
桩芯钢筋强度等级fy XK11 XK12 XK13
5.071 m
2139 1091
2163 1102
1872 957
1872 957
2162 1102
2201 1122
1832 937
2202 1122
单桩承载力计算公式

单桩承载力计算公式
1.斯托克斯公式(Q=σπd^2/4):
斯托克斯公式是最简单的单桩承载力计算公式,适用于均质、饱和、饱和度高于85%的细砂土和粉土。
其中,Q为桩的承载力,σ为当地有效应力,d为桩的直径。
2. 牛顿-拉福森公式(Q = 2πNR/ln(R/r)):
牛顿-拉福森公式适用于泥质土、细砂土和砾石土等非饱和土壤。
其中,Q为桩的承载力,N为土的可逆孔隙比,R为桩的侧摩擦力,r为桩的顶端摩擦力。
3. 迈士公式(Q = Ap + πNar + Qu):
迈士公式适用于粘土、粉土和砾石土等非完全饱和土壤。
其中,Q为桩的承载力,Ap为桩尖端摩擦力,Na为桩周侧摩擦力的修正系数,r为桩的半径,Qu为桩基的无约束压缩强度。
4. 布勒特公式(Q = Ap + Qu + 0.5πNar):
布勒特公式适用于饱和黏土和泥质土。
其中,Q为桩的承载力,Ap为桩尖端摩擦力,Qu为桩基的无约束压缩强度,Na为桩周侧摩擦力的修正系数,r为桩的半径。
5.声衰减公式(Q=σA+πp(Qr)):
声衰减公式适用于黏土和充满水分的砂土。
其中,Q为桩的承载力,σ为当地有效应力,A为桩尖部承载力分量,p为声衰减系数,Qr为桩身表面的剪切摩擦力。
以上只是一些常用的单桩承载力计算公式,不同土体和工程条件下可能会使用不同的公式。
在实际工程设计和计算中,需要根据具体情况选择合适的公式,并结合现场勘察和试验数据进行合理调整和校正,以确保计算结果的准确性和可靠性。
单桩承载力计算书新

单桩承载力计算书一、设计资料1.单桩设计参数桩径1.0(扩底1.2)选取1号点位,回填土土层厚度取9.7m 地面堆载为10kn/m2桩型及成桩工艺:机械钻孔灌注桩中性点深度ln=9.7*0.9=8m单桩极限承载力标准值:从桩顶起算Q uk = u ∑ψsi q sik l i + ψp q pk A p=0.92*3.14*1.0*(8*18+160*1.5)+0.92*3.14*0.6*0.6*4600=5893kN中性点以上负摩阻计算:i i i e e e i z z ∆+∆=∑-=γγσγ1121' =6.578184.0=⨯⨯kN q i ni si n 5.116.572.0'=⨯==σξ 中性点以上负摩阻标准值:11.5*3.14*1*8=289KN中性点以上填土的正摩阻:0.92*3.14*1*18*8=416kn特征值:5893/2-289-416/2≈2400KN检测值:检测值采用桩反力反推, 即当桩基检测值为该值时能满足设计所需 模型中最大设计轴力1782.54kn检测标准值为(1783+289+416/2)*2≈4500KN单桩承载力计算书1.单桩设计参数桩径0.8(扩底1.2)选取1号点位,回填土土层厚度取9.7m 地面堆载为10kn/m2 桩型及成桩工艺:机械钻孔灌注桩中性点深度ln=9.7*0.9=8m单桩极限承载力标准值:从桩顶起算Q uk = u ∑ψsi q sik l i + ψp q pk A p=3.14*0.8*(8*18+160*1.5)+0.87*3.14*0.6*0.6*4600=5488kN中性点以上负摩阻计算:i i i e e e i z z ∆+∆=∑-=γγσγ1121' =6.578184.0=⨯⨯kN q i ni si n 5.116.572.0'=⨯==σξ 中性点以上负摩阻标准值:11.5*3.14*0.8*8=231KN中性点以上填土的正摩阻:3.14*0.8*18*8=362kn特征值:5488/2-231-362/2≈2300KN检测值:检测值采用桩反力反推, 即当桩基检测值为该值时能满足设计所需 模型中最大设计轴力1916.57kn检测标准值为(1917+231+362/2)*2≈4600KN2..单桩设计参数桩径0.8(扩底1.4)选取1号点位,回填土土层厚度取9.7m 地面堆载为10kn/m2桩型及成桩工艺:机械钻孔灌注桩中性点深度ln=9.7*0.9=8m单桩极限承载力标准值:从桩顶起算Q uk = u ∑ψsi q sik l i + ψp q pk A p=3.14*0.8*(8*18+160*1.5)+0.83*3.14*0.7*0.7*4600=6838kN中性点以上负摩阻计算:i i i e e e i z z ∆+∆=∑-=γγσγ1121' =6.578184.0=⨯⨯kN q i ni si n 5.116.572.0'=⨯==σξ 中性点以上负摩阻标准值:11.5*3.14*0.8*8=231KN中性点以上填土的正摩阻:3.14*0.8*18*8=362kn特征值:68388/2-231-362/2≈3000KN检测值:检测值采用桩反力反推, 即当桩基检测值为该值时能满足设计所需 模型中最大设计轴力2530.9kn检测标准值为(2531+231+362/2)*2≈5800KN3..单桩设计参数桩径0.8(扩底1.8)选取1号点位,回填土土层厚度取9.7m 地面堆载为10kn/m2 桩型及成桩工艺:机械钻孔灌注桩中性点深度ln=9.7*0.9=8m单桩极限承载力标准值:从桩顶起算Q uk = u ∑ψsi q sik l i + ψp q pk A p=3.14*0.8*(8*18+160*1.5)+0.76*3.14*0.9*0.9*4600=9856kN中性点以上负摩阻计算:i i i e e e i z z ∆+∆=∑-=γγσγ1121' =6.578184.0=⨯⨯kN q i ni si n 5.116.572.0'=⨯==σξ 中性点以上负摩阻标准值:11.5*3.14*0.8*8=231KN中性点以上填土的正摩阻:3.14*0.8*18*8=362kn特征值:9856/2-231-362/2≈4500KN检测值:检测值采用桩反力反推, 即当桩基检测值为该值时能满足设计所需 模型中最大设计轴力4481.16kn检测标准值为(4482+231+362/2)*2≈9700KN1.单桩设计参数桩径0.8 选取1号点位,回填土土层厚度取9.7m 地面堆载为10kn/m2 桩型及成桩工艺:机械钻孔灌注桩中性点深度ln=9.7*0.9=8m单桩极限承载力标准值:从桩顶起算Q uk = u ∑ψsi q sik l i + ψp q pk A p=3.14*0.8*(8*18+160*1.5)+3.14*0.4*0.4*4600=2733kN中性点以上负摩阻计算:i i i e e e i z z ∆+∆=∑-=γγσγ1121' =6.578184.0=⨯⨯kN q i ni si n 5.116.572.0'=⨯==σξ 中性点以上负摩阻标准值:11.5*3.14*0.8*8=231KN中性点以上填土的正摩阻:3.14*0.8*18*8=362kn特征值:2733/2-231-362/2≈950KN检测值:检测值采用桩反力反推, 即当桩基检测值为该值时能满足设计所需 模型中最大设计轴力833.74kn检测标准值为(883.74+231+362/2)*2≈2800KN桩身强度计算(800mm 直径桩)一、设计资料1.基本设计参数桩身受力形式:轴心受压桩稳定系数不折减不考虑地震作用效应桩顶5D 范围内箍筋加密主筋:HRB400f'y = 360 N/mm2箍筋:HRB400桩身截面直径:D = 800.00 mm纵筋合力点至近边距离:as = 35.00 mm混凝土:C30fc = 14.3 N/mm2成桩工艺系数: = 0.702.设计依据《建筑桩基技术规范》JGJ 94-2008《混凝土结构设计规范》GB 50010--2010二、计算结果1.. 验算正截面受压承载力r =D/2=800/2=400mmAps = πr 2 = 3.14×400.002 =502400 mm2根据《建筑桩基技术规范》式(5.8.2-2)ps c c A f ψ= 0.70×14.3×502400 =5029024N正截面受压承载力满足要求桩身强度计算(1000mm 直径桩)一、设计资料1.基本设计参数桩身受力形式:轴心受压桩稳定系数不折减不考虑地震作用效应桩顶5D 范围内箍筋加密主筋:HRB400f'y = 360 N/mm2箍筋:HRB400桩身截面直径:D = 1200.00 mm纵筋合力点至近边距离:as = 35.00 mm 混凝土:C30fc = 14.3 N/mm2成桩工艺系数: = 0.702.设计依据《建筑桩基技术规范》JGJ 94-2008《混凝土结构设计规范》GB 50010--2010二、计算结果1.验算正截面受压承载力r =D/2=1000/2=500mmAps = πr 2 = 3.14×500.002 =785000 mm2根据《建筑桩基技术规范》式(5.8.2-2)ps c c A f ψ = 0.70×14.3×785000=7857850N 正截面受压承载力满足要求2. 计算0.8直径桩配筋配筋率0.45%A's = minAps = 0.45%×502400=2260mm2 实配主筋:12D16,A's =2412mm23 .计算1.0直径桩配筋配筋率0.35%A's = minAps = 0.35%×785000=2747mm2 实配主筋:14D16,A's =2814mm24.裂缝计算因为桩身受力形式为轴心受压桩,所以无需进行裂缝计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
(二)桩侧摩阻力的影响 因素及其分布
桩侧摩阻力=f(土间的相对位移,土的性质, 桩侧摩阻力=f(土间的相对位移,土的性质, 桩 =f(土间的相对位移 的刚度,时间,土中应力状态,桩的施工) 的刚度,时间,土中应力状态,桩的施工) 桩侧摩阻力实质上是桩侧土的剪切问题。 桩侧摩阻力实质上是桩侧土的剪切问题。 桩侧土极限摩阻力值∝ 桩侧土极限摩阻力值∝桩侧土的剪切强度 桩侧土的剪切强度=f(类别、性质、 =f(类别 桩侧土的剪切强度=f(类别、性质、 状态和剪切 面上的法向应力) 面上的法向应力) 桩的刚度较小时, 桩的刚度较小时,桩顶截面的位移较大而桩 底较小,桩顶处桩侧摩阻力常较大; 底较小,桩顶处桩侧摩阻力常较大;当桩刚度较 大时,桩身各截面位移较接近, 大时,桩身各截面位移较接近,由于桩下部侧面 土的初始法向应力较大,土的抗剪强度也较大, 土的初始法向应力较大,土的抗剪强度也较大, 以致桩下部桩侧摩阻力大于桩上部。 以致桩下部桩侧摩阻力大于桩上部。
5
(一)荷载传递过程 与土对桩的支承力
柱桩:由于桩底位移很小, 柱桩:由于桩底位移很小,桩侧摩阻力不易得到充 分发挥。对于一般柱桩, 分发挥。对于一般柱桩,桩底阻力占桩支承力的绝 大部分,桩侧摩阻力很小常忽略不计。 大部分,桩侧摩阻力很小常忽略不计。但对较长的 柱桩且覆盖层较厚时,由于桩身的弹性压缩较大, 柱桩且覆盖层较厚时,由于桩身的弹性压缩较大, 也足以使桩侧摩阻力得以发挥, 也足以使桩侧摩阻力得以发挥,对于这类柱桩国内 已有规范建议可予以计算桩侧摩阻力。 已有规范建议可予以计算桩侧摩阻力。 摩擦桩: 桩底土层支承反力发挥到极限值, 摩擦桩: 桩底土层支承反力发挥到极限值,则需要 比发生桩侧极限摩阻力大得多的位移值, 比发生桩侧极限摩阻力大得多的位移值,这时总是 桩侧摩阻力先充分发挥出来, 桩侧摩阻力先充分发挥出来,然后桩底阻力才逐渐 发挥,直至达到极限值。对于桩长很大的摩擦桩, 发挥,直至达到极限值。对于桩长很大的摩擦桩, 也因桩身压缩变形大,桩底反力尚未达到极限值, 也因桩身压缩变形大,桩底反力尚未达到极限值, 桩顶位移已超过使用要求所容许的范围, 桩顶位移已超过使用要求所容许的范围,且传递到 桩底的荷载也很微小, 桩底的荷载也很微小,此时确定桩的承载为时桩底 极限阻力不宜取值过大。 极限阻力不宜取值过大。
back
10
back
11
(三)桩底阻力的影响因素 及其深度效应
桩底阻力=f (土的性质 持力层上覆荷载,桩径, 土的性质, 桩底阻力=f (土的性质,持力层上覆荷载,桩径,桩 底作用力、时间及桩底端进持力层深度) 底作用力、时间及桩底端进持力层深度) 桩底地基土的受压刚度和抗剪强度大则桩底阻力 也大,桩底极限阻力取决于持力层土的抗剪强度和 也大, 上覆荷载及桩径大小的影响。 上覆荷载及桩径大小的影响。由于桩底地基土层受 压固结作用是逐渐完成的, 压固结作用是逐渐完成的,桩底阻力将随土层固结 度提高会随着时间而增长。 度提高会随着时间而增长。 模型和现场的试验研究表明,桩的承载力( 模型和现场的试验研究表明,桩的承载力(主要 是桩底阻力)随着桩的入土深度, 是桩底阻力)随着桩的入土深度,特别是进入持力层 深度效应, 的深度而变化。这种特性称为深度效应 的深度而变化。这种特性称为深度效应,桩底端进 入持力砂土层或硬粘土层时, 入持力砂土层或硬粘土层时,桩的极限阻力随着进 入持力层的深度线性增加。达到一定深度后, 入持力层的深度线性增加。达到一定深度后,桩底 阻力的极限值保持稳值。这一深度称为临界深度 临界深度h 阻力的极限值保持稳值。这一深度称为临素及其分布
如图所示两例来说明其分布变化。 如图所示两例来说明其分布变化。 所示两例来说明其分布变化 为上海某工程钢管打入桩实测资料, 其中 a) 为上海某工程钢管打入桩实测资料,在 粘性土中的打入桩的惦侧摩阻力沿深度分布的 形状近乎抛物线,在桩顶处的摩阻力等于零, 形状近乎抛物线,在桩顶处的摩阻力等于零, 桩身中段处的摩阻力比桩的下段大。 桩身中段处的摩阻力比桩的下段大。现常近似 假设打入桩桩侧摩阻力在地面处为零, 假设打入桩桩侧摩阻力在地面处为零, b) 图为我国某工程钻孔灌注桩实测资料 ,从地面起的桩侧摩阻力呈线性增加,其深度 从地面起的桩侧摩阻力呈线性增加, 仅为桩径的5 10倍 仅为桩径的5一10倍,而沿桩长的摩阻力分布 则比较均匀。 则比较均匀。而对钻孔灌注桩则近似假设桩侧 摩阻力沿桩身均匀分布。 摩阻力沿桩身均匀分布。
4
(一)荷载传递过程 与土对桩的支承力
土对桩的支承力=桩侧摩阻力+ 土对桩的支承力=桩侧摩阻力+桩底阻力 桩的极限荷载(或称极限承载力)=桩侧极限摩阻力+ )=桩侧极限摩阻力 桩的极限荷载(或称极限承载力)=桩侧极限摩阻力+ 桩底极限阻力 桩侧摩阻力和桩底阻力的发挥程度与桩土间的 变形性态有关, 变形性态有关,并各自达到极限值时所需要的位移 量是不相同的。 量是不相同的。 试验表明: 试验表明:桩底阻力的充分发挥需要有较大的位移 在粘性土中约为桩底直径的25% 25%, 值,在粘性土中约为桩底直径的25%,在砂性土中 约为8%~10% 8%~10%, 约为8%~10%,而桩侧摩阻力只要桩土间有不太 大的相对位移就能得到充分的发挥, 大的相对位移就能得到充分的发挥,具体数量目前 认识尚不能有一致的意见,但一般认为粘性土为4 认识尚不能有一致的意见,但一般认为粘性土为4 6mm,砂性土为6~10mm 6~10mm。 ~6mm,砂性土为6~10mm。
13
(四)单桩在轴向受压荷载 作用下的破坏模式
第一种情况: 第一种情况: 当桩底支承在很坚硬 的地层, 的地层,桩侧土为软上层 其抗剪强度很低时,( ,(如 其抗剪强度很低时,(如 a), 图a),桩在轴向受压荷载 作用下, 作用下,如同一根压杆似 地出现纵向挠曲破坏。 地出现纵向挠曲破坏。在 荷载-沉降(P s)曲线上呈 (P荷载-沉降(P-s)曲线上呈 现出明确的破坏荷载。 现出明确的破坏荷载。桩 的承载力取决于桩身的材 料强度。 料强度。
8
(二)桩侧摩阻力的影响 因素及其分布
在砂性上中打桩时, 在砂性上中打桩时,桩侧摩阻力的变化与砂土 的初始密度有关, 的初始密度有关,如密实砂性上有剪胀性会使 摩阻力出现峰值后有所下降。 摩阻力出现峰值后有所下降。 桩侧摩阻力的大小及其分布决定着桩身轴 向力随深度的变化及数值,因此掌握、 向力随深度的变化及数值,因此掌握、了解桩 侧摩阻力的分布规律, 侧摩阻力的分布规律,对研究和分析桩的工作 状态有重要作用。 状态有重要作用。由于影响桩侧摩阻力的因素 即桩土间的相对位移、 即桩土间的相对位移、土中的侧向应力及上质 分布及性状均随深度变比, 分布及性状均随深度变比,因此要精确地用物 理力学方程描述桩侧摩阻力沿深度的分布规律 较复杂。 较复杂。
back
2
(一)荷载传递过程 与土对桩的支承力
桩基础 = 承台 + 基桩 单桩承载力:单桩在荷载作用下, 单桩承载力:单桩在荷载作用下,地基土和桩 本身的强度和稳定性均能得到保证, 本身的强度和稳定性均能得到保证,变形也在 容许范围内, 容许范围内,以保证结构物的正常使用所能承 受的最大荷载。 受的最大荷载。 一般情况下,桩受到轴向力、 一般情况下,桩受到轴向力、横轴向力及 弯矩作用, 弯矩作用,因此须分别研究和确定单桩的轴向 承载力和横轴向承载力。 承载力和横轴向承载力。 桩的承载力是桩与土共同作用的结果, 桩的承载力是桩与土共同作用的结果,了解单 桩在轴向荷载下桩土间的传力途径、 桩在轴向荷载下桩土间的传力途径、单桩承载 力的构成特点以及单桩受力破坏形态等基本概 将对正确确定单桩承载力有指导意义。 念,将对正确确定单桩承载力有指导意义。
7
(二)桩侧摩阻力的影响 因素及其分布
由于桩底地基土的压缩是逐渐完成的,因此桩 由于桩底地基土的压缩是逐渐完成的, 侧摩阻力所承担荷载将随时间由桩身上部向桩下部 转移。在桩基施工过程中及完成后桩侧土的性质、 转移。在桩基施工过程中及完成后桩侧土的性质、 状态在一定范围内会有变化,影响脏侧摩阻力,并 状态在一定范围内会有变化,影响脏侧摩阻力, 且往往也有时间效应。 且往往也有时间效应。影响桩侧摩阻力的诸因素中 土的类别、性状是主要因素。 ,土的类别、性状是主要因素。 在分析基桩承载力等问题时,各因素对桩侧摩 在分析基桩承载力等问题时, 阻力大小与分布的影响,应分别情况予以注意。 阻力大小与分布的影响,应分别情况予以注意。在 塑性状态粘性上中打桩,在桩侧造成对土的扰动, 塑性状态粘性上中打桩,在桩侧造成对土的扰动, 再加上打桩的挤压影响会在打桩过程中使桩周围土 内孔隙水压力上升,土的抗剪强度降低, 内孔隙水压力上升,土的抗剪强度降低,桩侧摩阻 力变小。待打桩完成经过一段时间后, 力变小。待打桩完成经过一段时间后,超孔隙水压 力逐渐消散,再加上粘土的触变性质, 力逐渐消散,再加上粘土的触变性质,使桩周围一 定范围内的抗剪强度不但能得到恢复, 定范围内的抗剪强度不但能得到恢复,而且往往还 可能超过其原来强度,桩侧摩阻力得到提高。 可能超过其原来强度,桩侧摩阻力得到提高。
单桩承载力
一、单桩轴向荷载传递机理和特点 二、单桩轴向容许承载力按土的支承 力的确定 三、单桩横轴向容许承载力的确定 四、按桩身材料强度确定单桩承载力 五、关于桩的负摩阻问题
back
1
一、单桩轴向荷载传递 机理和特点 (一)荷载传递过程与土对桩的支承力 (二)桩侧摩阻力的影响因素及其分布 (三)桩底阻力的影响因素及其深度效应 (四)单桩在轴向受压荷载作用下的破坏 模式
14
(四)单桩在轴向受压荷载 作用下的破坏模式
第二种情况: 第二种情况: 当具有足够强度的桩穿过抗 剪强度较低的土层而达到强度较 高的土层时(如图b) b), 高的土层时(如图b),桩在轴向 受压荷载作用下, 受压荷载作用下,桩底土体能形 成滑动面出现整体剪切破坏, 成滑动面出现整体剪切破坏,这 是因为桩底持力层以上的软弱土 层不能阻止滑动土楔的形成。 层不能阻止滑动土楔的形成。在 PT曲线上可求得明确的破坏荷载 PT曲线上可求得明确的破坏荷载 。桩的承载力主要取于桩底士的 支承力, 支承力,桩侧摩阻力也起一部分 作用。 作用。