距离保护的基本原理及应用举例
距离保护的基本原理及应用举例

主要元件为距离继电器,可根据其端子上所加的电压和电 流测知保护安装处至故障点间的阻抗值。距离保护保护范 围通常用整定阻抗 的大小来实现。 Z set
故障时,首先判断故障的方向 :
若故障位于保护区的正方向上,则设法测出故障点到保护 安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset, 说明故障发生在保护范围之内,这时保护应立即动作,跳开 对应的断路器;若Lk大于Lset,说明故障发生在保护范围之 外,保护不应动作,对应的断路器不会跳开。
方向阻抗继电器特性圆
jX
Z set
1 Z set 2
Z m 1 Z set 2
o
R
1 1 Z m Z set Z set 2 2
全阻抗继电器
特性:全阻抗继电器的动作特性是以保护安
装点为圆心、以整定阻抗Zset为半径所作的一 个圆。圆内为动作区,圆外为非动作区,圆 周是动作边界。 特点: 动作无方向性; 动作阻抗与整定阻抗相等。
的测量阻抗减小,保护范围延长, 可能造成保护无选择动作。 解决:在整定计算中解决,计算 动作电流时引入最小分支系数。
灵敏度校验:
K sen
Z 1.25 Z 12
II ( x) 2
II set
动作时间:t t
t
3、距离III段
整定原则:躲过本线路最小负荷阻抗
III set
5、整定计算举例
【例 3-1】 在图所示110kV网络中,各线路均装有距离保护,已知Z sA.max=20Ω、 Z sA.min=15Ω、Z sB.max=25Ω、Z sB.min=20Ω,线路AB的最大负荷电流 I L.max=600A,功率因数为0.85,各线路每公里阻抗Z 1=0.4Ω/km,线路阻抗角 =70º ,电动机的自起动系数K ast=1.5,保护5三段动作时间=2s,正常时母线最低 工作电压U L,min取等于0.9U N (U N=110kV)。试对其中保护1的相间保护短路Ⅰ、Ⅱ、 Ⅲ段进行整定计算。(各段均采用相间接线的方向阻抗继电器)
第三章距离保护

第三章距离保护第三章:电网距离保护1.距离保护的定义和基本原理:距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。
基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。
与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。
当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若LK大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。
若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。
}通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。
2.几种继电器的方式:苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。
电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。
但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。
电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。
多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。
3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im& 动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。
继电保护(距离保护)

对于相间短路,故障环路为相—相故障环路,取测量电 压为保护安装处两故障相的电压差,测量电流为两故障相的 电流差,称为相间距离保护接线方式,能够准确反应两相短 路、三相短路和两相接地短路情况下的故障距离。
LINYI UNIVERSITY
LINYI UNIVERSITY
LINYI UNIVERSITY
UB = z1 l k B 、 C 相 测 量 I B + K3I 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
增大,短路阻抗比正常时测量到的阻抗大大降低。
LINYI UNIVERSITY
二、测量阻抗及其与故障距离的关系
Um Zm = = z1 l k Im Z set = z1 l set
♣ 距离保护反应的信息量测量阻抗在故障前后变化比电流变 化大,因而比反应单一物理量的电流保护灵敏度高。 ♣ 距离保护的实质是用整定阻抗 Zset 与被保护线路的测量阻 抗 Zm 比较: 当短路点在保护范围以内时,Zm<Zset,保护动作; 当短路点在保护范围以外时,Zm>Zset时,保护不动作。 因此,距离保护又称低阻抗保护。
U kA = 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
简述距离保护的工作原理

简述距离保护的工作原理距离保护的工作原理其实可以说是电力系统里的一位“保护神”。
想象一下,电力系统就像一个大家庭,远亲近邻都得相处融洽。
可一旦发生故障,像短路这种“黑心亲戚”出现,家庭的和谐就得打折扣。
这个时候,距离保护就像是那个懂事的小孩,迅速冲上前,帮忙解决问题。
说到距离保护,它的工作原理主要是通过测量电流和电压的关系来判断故障发生的位置。
它就像个侦探,时刻在观察周围的一切。
当电流流经变压器、输电线路的时候,距离保护设备会监测这些数据。
如果某个地方出现异常,比如电流大得吓人,那就说明出了问题。
想象一下,电流就像是家庭聚会的气氛,正常时候欢声笑语,突然间就变得紧张起来,那肯定是出事了。
这时候,距离保护就得开始行动了。
它会计算出一个“距离”,告诉我们故障发生的具体位置,像是给我们发了个定位导航,轻松找到“罪魁祸首”。
通过对比正常值和异常值,设备能迅速决定是断开故障线路,还是继续供电。
这种聪明的判断,真是让人拍手称快,简直是电力系统里的“智多星”。
距离保护还拥有一项绝佳的“自我修复”能力。
故障被排除后,它会自动恢复工作状态,继续保护整个电力系统。
真的是一名默默无闻但又不可或缺的英雄,就像是那种永远不会缺席的朋友,总是在你需要的时候出现。
再说说它的“多面手”能力吧。
距离保护不仅能用于高压线路,还能适用于各种复杂环境。
这就像一个万能的工具,无论你是在山顶、沙漠,还是在海底,它都能发挥作用。
即使环境再恶劣,它也能保持冷静,确保电力供应的安全。
使用距离保护设备还需要一些注意事项。
虽然它聪明,但也不是说百分之百没问题。
定期维护和检查设备是必不可少的,毕竟即使是最好的朋友,也需要时不时关心一下。
这样才能确保在关键时刻,它能够正常工作,不会掉链子。
距离保护还可以和其他保护装置配合,形成一个庞大的保护网络。
就像家庭成员间的默契配合,各自担任不同的角色,互相补充,共同抵御外来的“威胁”。
这就好比,一个人再聪明,也得靠团队的力量才能战胜困难。
《距离保护全》课件

适应性差
传统距离保护主要针对 稳态工况,对于暂态和 动态变化的工况适应性
较差。
维护困难
由于设备老化和环境变 化等原因,距离保护装 置可能会出现故障,维
护困难。
配置复杂
距离保护装置的配置和 调试过程较为复杂,需 要专业人员进行操作。
距离保护的发展趋势与展望
01
02
03
04
创新算法
研究新的算法和策略,提高距 离保护的准确性和可靠性,减
距离保护装置的测量阻抗与线路阻抗 成正比,当测量阻抗大于整定阻抗时 ,保护装置动作切除故障线路。
距离保护装置通过测量故障点至保护 装置的距离,并与预先设定的整定值 进行比较,判断是否发生故障,从而 决定是否动作。
距离保护的组成
距离保护装置由测量部分、逻辑部分和执行部分组成。
测量部分负责测量线路阻抗,逻辑部分负责比较测量值与整定值,执行部分负责切 除故障线路。
《距离保护全》ppt课 件
contents
目录
• 距离保护概述 • 距离保护的基本原理 • 距离保护的算法与实现 • 距离保护的应用与案例分析 • 距离保护的未来发展与挑战
距离保护概述
01
定义与特点
定义
距离保护是一种基于阻抗测量原 理的保护方式,通过测量输电线 路的阻抗值变化来检测故障。
特点
具有较高的灵敏度和可靠性,能 够快速切除故障,减小故障影响 范围。
距离保护的重要性
提高电力系统稳定性
距离保护能够快速切除故障,降低故 障对电力系统的冲击和影响,提高电 力系统的稳定性。
保障设备安全
距离保护能够及时检测到线路故障, 避免设备在异常情况下运行,从而保 障设备的安全。
距离保护的历史与发展
线路保护(距离保护、光纤电流差动)

N
ER
ES F3 UM
F1
UOP F2
ER
一、距离保护原理 方向阻抗继电器
jX
Z set
Zm
动作 9方 0A程 rZm gZse t 27 0 Zm
以灵敏角和Zset为直径作圆
R
方向与幅值9换 0 算 ArC 关 g2系 70 D
2A D c
2B D c
2AZmZmZs etZs et
排故前提:电流电压回路接线正确
四、检验中常见故障及处理 交流回路故障
交流回路故障现象及处理(电流回路)
1、测试仪显示电流回路开路,装置采样无该相电流值。 分析处理:使用万用表检查或者直接拆线检查是否有绝缘包扎
2、测试仪未显示电流回路开路,装置采样无该相电流值或者 电流值比加入值小。
分析处理:紧固装置交流插件,或者检查该相电流回路是否有短接
线路保护
四、检验中常见故障及处理 故障分类
一般分为四类故障:
一、交流回路故障(采样故障) 二、开入回路故障 三、定值故障 四、开出回路故障(整组传动故障)
四、检验中常见故障及处理 交流回路故障
交流回路检查方法
建议加入电流电压值,检查DSP和CPU采样值
U A 10 V 0 U B 20 V 120 U C 30 V 120 IA 1A 0 I B 2 A 120 I C 3 A 120
二、纵联保护 光纤电流差动保护
区外故障示意图
Es M
TA
N
TA
ER
1 IM
2 IN
区外故障时,一侧电流由母线流向线路,为正值,另一侧电流由线路 流向母线,为负值,两电流大小相同,方向相反,所以差动电流为零, 差流元件不动作。凡是穿越性的电流不产生动作电流,只产生制动电 流。制动电流是穿越性电流的2倍。
继电保护技术培训(距离保护)

距离保护整定计算
二、相间距离保护的整定计算公式
2.3 距离Ⅲ段:
III Z set .1
Z ld . min Ⅲ K rel K re K ss
Z ld . min
0.9U e. x I fh. max
可靠系数Krel取1.2~1.3;返回系数Kre取1.15~1.25;自启动系数Kss取1.1~1.7。
A、助增分支(保护安装处至故障点sN Kb Z sN
四川能投集团继保培训
距离保护整定计算
二、相间距离保护的整定计算公式 分支系数的计算:
B、汲出分支(保护安装处至故障点有负荷引出,保护测量阻抗将减小)
汲出系数是小于1的数值
Kb
1 Z dz Z fhmin K h K zq cos( d fh ) Kk U fhmin I fhmax 0.9 110 3 I fhmax 0.9 110 3 0.35 163.5
带方向闭锁的距离保护
Z fh. min
系数取值: 1.2, K h Kk
II II I Z op .1 K rel Z AB K rel Kb. min Z op.2
Z A 1 I f .m n 2 M 3 k0 m 1 / E1 1 3k 5 V N
6 k0 m
6 k0 m
0.5s t8
6
7 10
8
9
t1 0.5s V A0
总分支系数
Kb.min Kb助Kb汲 2.52 0.575 1.35
四川能投集团继保培训
距离保护整定计算
二、相间距离保护的整定计算公式
2.2 距离Ⅱ段:
② 与相邻元件的速动保护配合:
线路的距离保护

第五章 电网的距离保护第一节 距离保护的工作原理电流、电压保护具有简单、经济、可靠性高的突出优点,但是,它们存在保护范围、灵敏性受系统运行方式变化影响较大的缺点,尤其是在长距离重负荷的输电线路上以及长线路保护与短线路保护的配合中,往往不能满足灵敏性的要求;此外,在多电源环形网系统中,选择性也不能满足要求。
因此,电压等级在110kv 以上、运行方式变化较大的多电源复杂电网,构成保护时通常要求采用性能更加完善的距离保护装置。
一、距离保护的基本概念由于电流、电压保护所反应的电气量随系统运行方式、系统结构、短路形式的改变而变化,使得它们的保护功能难以满足系统发展的要求。
如图5-1所示,距离保护是反应被保护线路阻抗大小进行工作的,该阻抗是由被保护线路始端测量电压m U 与测量电流m I 的比值来反应,称为测量阻抗Z m 。
在系统正常运行时的测量阻抗Z m 是负荷阻抗Z L ,它是额定电压NU 和线路负荷电流L I 之比,值较大。
当线路发生短路时测量阻抗Z m 反应短路点到保护安装处的线路阻抗Z k ,它与距离成正比,值较小,而且短路点愈靠近保护安装处,母线残压remU 愈低,短路电流k I 愈大,其比值Z m 愈小,保护愈先动作。
测量阻抗Z m 的大小,反应了短路点的远近,当Z m 小于保护范围末端的整定阻抗Z set 而进入动作区时,保护动作。
因此,距离保护是以测量阻抗的大小来反应短路点到保护安装处的距离,并根据距离的远近确定动作时限的一种保护。
使距离保护刚好动作的最大测量阻抗称为动作阻抗或起动阻抗,用Z OP 表示。
由于距离保护反应的参数是阻抗,故又被称为阻抗保护。
因线路阻抗只与系统在不同运行方式下短路时电压、电流的比值有关,而与短路电流的大小无关,所以距离保护基本不受系统运行方式变化的影响。
二、距离保护的时限特性距离保护动作时间t 与保护安装处至短路点之间距离l 的关系 f(l)t ,称为距离保护的时限特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zm
Um Im
Uk Ik
Zk
Z1 LK
3.1.2 测量电压测量电流的选取
在单相系统中,测量电压就是保护安装处的电压,测量电流 就是线路中的电流,系统金属性短路时两者之间的关系为:
Um Im Z m Im Z k Im Z1 Lk
在实际三相系统的情况下?
故障电流可能流通的通路称为故障环 。
全阻抗继电器特性圆
jX
Z set
1
Zm
o
R
ቤተ መጻሕፍቲ ባይዱ
Zm Zset
3.2.2.多边形动作特性的阻抗继电器
如图3-8所示,阻抗继电器准四边形动作特性,准四边形以 内为动作区,以外为不动区,即测量阻抗末端位于准四条边 上为动作边界。
jX
Xset α2
o
α4
Zm
α3
α1 Rset
R
(b)
设测量阻抗Zm的实部为 Rm,虚部为 X m,则图3-8在第Ⅳ象限
1、单相接地故障的情况下,存在一个故障相 与大地之间的故障环(相-地故障环) 。
2、两相接地故障的情况下,存在两个故障相 与大地之间的相-地故障环和一个两故障相之 间3、的两故相障不环接(相地-故相障故的障情环况) 。下,存在一个两故障 相之间的相-相故障环 。
4、三相故障的情况下,存在三个相-地故障环 和三个相-相故障环 。 距离保护的正确工作是以故障距离的正确测量为基础的, 所以应以故障环上的电压电流做出的测量作为判断故障范围 的依据,对非故障环上电压电流做出的测量应不予反映。
主要元件为距离继电器,可根据其端子上所加的电压和电流
测知保护安装处至故障点间的阻抗值。距离保护保护范围通
常用整定阻抗
Z
的大小来实现。
se t
故障时,首先判断故障的方向 :
➢若故障位于保护区的正方向上,则设法测出故障点到保护 安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说 明故障发生在保护范围之内,这时保护应立即动作,跳开对 应的断路器;若Lk大于Lset,说明故障发生在保护范围之外, 保护不应动作,对应的断路器不会跳开。
若故障位于保护区的反方向上,则无需进行比较和测量,直 接判为区外故障。
测量阻抗:测量电压与测量电流之比。
Zm
Um Im
Zm Zm m Rm jX m
正常运行时保护安装处测量到的阻抗为负荷
阻抗 ,即
Zm
Um Im
ZL
在被保护线路任一点发生故障时,测量阻抗 为保护安装处到短路点的短路阻抗。
第三章 线路阶段式 距离保护
3.1 距离保护的基本原理
3.3.1 距离保护工作原理
电流保护一般只适用于35kv及以下电压等级的配电网。
对于110kv及以上电压等级的复杂电网,必须采用性能更加 完善的保护装置,距离保护就是适应这种要求的一种保护原 理。
距离保护:反应保护安装地点至故障点之间的距离,并根据 距离的远近而确定动作时限的一种保护装置。
关系称为距离保护的时限特性,目前获得广泛应用的是阶梯 型时限特性,称为距离保护的Ⅰ、Ⅱ、Ⅲ段
3.1.4 距离保护的组成
3.2 阻抗继电器及其动作特性
阻抗继电器是距离保护装置的核心元件,其主要作 用是测量短路点到保护安装处之间的距离,并与整 定阻抗值进行比较,以确定保护是否应该动作。
U和m 的Im比值称为继电器的测量阻抗 。Zm
部分的特性可以表示为
Rm Rset
Xm
Rmtg1
第Ⅱ象限部分的特性可以表示为
X m Rset
Rm
X mtg2
第Ⅰ象限部分的特性可以表示为
Rm Xm
Rset X mctg3 X set Rmtg4
综合以上三式,动作特性可以表示为
X mtg2 Rm Rmtg1 X m
Rset X set
1 4
Xm
Rm
8 Rset
Xˆ m
1 4
Rm
Xm
X set
1 8
Rˆm
(3-12)
1 4
该式可以方便地在微机保护中实现。
3.3 距离保护整定计算与对距离保护 的评价
A
G~
2 1B
jX 3
4C
jX
D
G~
R R
1、距离I段 整定原则:躲过下一线路出口短路
ZI set
Krel Z AB
Krel Z1lAB
特性:方向阻抗继电器的动作特性是以 整定阻抗为直径并且圆周经过坐标原点的 一个圆,圆内为动作区,圆外为非动作区 ,圆周是动作边界。 特点:动作具有方向性;
方向阻抗继电器特性圆
jX
1 2 Z set
Z set
Zm
1 2
Z set
o
R
Zm
1 2
Z set
1 2
Z
set
全阻抗继电器
特性:全阻抗继电器的动作特性是以保 护安装点为圆心、以整定阻抗Zset为半径 所作的一个圆。圆内为动作区,圆外为非 动作区,圆周是动作边界。 特点: 动作无方向性; 动作阻抗与整定阻抗相等。
由于 Z可m 以写成 R的 复jX数形式,所以可以利用复 数平面来分析这种继电器的动作特性,并用一定的 几何图形把它表示出来。
M 1 N 2 TA
P3
TV
Im
jX P
Zm
ZI se t
Um
2
R
3
M
1
3.2.1 园特性阻抗继电器——两种不同的表达形式,
绝对值(或幅值)比较动作方程:比较两个量大小的绝对值比 较原理表达式; 相位比较动作方程:比较两个量相位的相位比较原理表达式 。
Xˆ mctg3 Rˆ m tg 4
其中
Xˆ m
0,
X
m
,
Xm 0 Xm 0
Rˆm
0, Rm ,
Rm 0 Rm 0
若取 ,ctg3
1 2 14, 1, ctg4
3 45, 4 7,.1则 tg1 tg2 0.249 0.25
0.1245 0.125 ,1 式(3-11)又可表示为
以保护安装处故障相对地电压为测量电压、以带有零 序电流补偿的故障相电流为测量电流的方式,就能够正 确地反应各种接地故障的故障距离,所以它称为接地距 离保护接线方式。
以保护安装处两故障相相间电压为测量电压、以 两故障相电流电流之差为测量电流的方式称为相间 距离保护接线方式。
3.1.3、时限特性
距离保护的动作时间t与保护安装处到故障点之间的距离l的
1、偏移圆特性 有两个整定阻抗:正方 向整定阻抗和反方向整 定阻抗,两整定阻抗对 应矢量末端的连线就是 特性圆的直径。特性圆 包括座标原点。
圆心:
1 2
(Z
set1
Z set2
)
半径:
1 2
(Z set1
Z set2
)
Zm
1 2
(Z set1
Z set2
)
1 2
(Z set1
Z set2
)
2、方向圆特性