复合材料力学课件第05章湿热效应

合集下载

《复合材料原理》界面热物理相容性 ppt课件

《复合材料原理》界面热物理相容性  ppt课件
Interphase layer
25-1000º C范围 碳纤维ΔαC=8×10-6 SiC相ΔαSiC=4×10-6
SiC Matrix
C fiber
= rC • (αSiC-αC)• ΔT
间隙宽度约为24nm
热膨胀失配
ppt课件
28
3 界面应力与性能
3.2 界面失配与界面应力

由于热膨胀系数接近,SiC/SiC中界面层与纤维和基 体结合紧密,界面结合强度随温度变化不大,这与 C/SiC中纤维与基体热膨胀失配时的情况完全不同。
1.3 界面应力分析
基体中的应力达到屈服强度Ru时,基体开裂:
=do-df代入得:
Ru L( )( ) df m 2
L为两条裂纹之间的间距。 L表示开裂倾向大小。 裂纹间距等于L时基体开裂。
ppt课件 11
2 影响基体裂纹的因素
2.1 裂纹间距
L(
2
df
Ru )( ) m
R+dR
8
1 界面热应力分析
1.3 界面应力分析
基体一端所受的总的张力为: R/4(do2-df2) d 纤维一端 基体另一端所受的总的张力为: 2 2 (R+dR)(/4)(do -df ) dL 界面上所受的总的剪切力为: d dfdLi 平衡时,应有: +d (/4) (do2-df2)R+dfidL = /4 (do2-df2 )(R+dR) 或 dfidL =(/4) (do2-df2)d R
ppt课件 16

2 影响基体裂纹的因素
2.2 裂纹生成温度
Dl D DT ( m f )(TF TC )
C SiC C

复合材料力学性能ppt课件

复合材料力学性能ppt课件

低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量





拉伸强度





断裂伸长率 小


很大

断裂能





F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试

实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19

材料热力学5.界面交接及润湿现象.吴申庆

材料热力学5.界面交接及润湿现象.吴申庆

L1—L2—V体系 当两种液体L1和L2以及气相V交接时,如图4-2,表 面张力γ1V和γ2V和界面张力γ12与水平面的夹角分别 为θ、ψ、φ。 按照力学平衡条件 :
i 1v 2v 12 0
考虑水平面上的分量: γ2VCOSψ—γ1Vcosθ—γ12cosφ=0 (4-4) 垂直方面的分量: γ2Vsinψ—γ1Vsinθ—γ12sinφ=0 (4-5)
三种润湿方式的共同之处是:液体将气体从 固体表面排挤开,使原有的固-气界面消失, 而代之以新的固-液界面。
二.润湿过程进行的方向 根据热力学,可以用润湿过程总体系总表面自由能 (焓)的减少程度来判断润湿过程的方向,为此引入 润湿功的概念,即润湿过程中体系对环境所作的有效 功。这功在数值上应等于体系总表面自由能的减少: —ΔG=W润 (4-10)
材料热力学
Thermodynamic of Materials
材料科学与工程学院 吴申庆
2012.2
第五章: 界面交接及润湿现象
Interface Connection and Wetting Process
•界面交接处的力学平衡 •固-液相间的湿润现象 •影响润湿性的因素 •润湿性的研究测量方法 •材料加工过程的润湿问题
一.界面交接处的力学平衡
• S-L-V体系 • L1-L2-V体系 • Sa—Sb—Sc体系
•S-L-V体系
当固(S)、液(L)、气(V)三相交接并且处 于平衡状态时,其润湿程度由交接各相的性质共同 决定,为了定量描述润湿过程,需要利用润湿角 (亦称接触角Contact angle)这一概念。 定义润湿角(接触角)为三相交接处液-气界面 (L-V)和液-固(L-S)界面之间的夹角,即界面 张力γLV和γSL的夹角。

《复合材料原理》PPT课件

《复合材料原理》PPT课件
的树脂(如乙烯基酯树脂)为基体; 对于碱性介质:宜采用无碱玻璃纤维为增强体和耐碱性
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料

复合材料的力学性能ppt课件

复合材料的力学性能ppt课件
外表改性剂对植物纤维/ 聚丙烯复 合资料力学性能的影响
采用不同的外表改性剂(苯甲酸、硬脂酸、 有机硅烷) 对植物纤维/ 聚丙烯复合体系进 展了处置,研讨了外表改性剂对体系力学性 能的影响规律,讨论了复合资料界面粘接机 理,分析了力学性能的变化规律。研讨结果 阐明,苯甲酸的参与可以使复合资料的拉伸 强度有较大提高,但冲击强度下降;经硬脂 酸处置的复合资料,其冲击强度有明显提高; 经有机硅烷处置的复合资料,拉伸强度及冲 击强度均有所提高。
由以下图可知,随着有机硅烷用量的加,复合资料的 拉伸强度会明显添加, 当有机烷含量达115 %时,拉 伸强度达最大值。以上结果阐明,硅烷偶联剂水溶 液的浸透性极强,可浸透植物纤维颗粒的一切间隙, 从而进一步浸润植物纤维颗粒的全部外表,使得偶 联剂与植物纤维外表坚持良好的接触;而有机硅烷 中的烷氧基团水解后构成硅醇,这样,硅醇就可以跟 植物纤维中的羟基作用,使纤维的吸水性减少,降低 了纤维的极性[3 ] 。
复合资料的特点
以天然植物纤维与热塑性树脂混合制备的复合资料 具有质量轻,加工性能好的特点,在许多领域有着广 泛的运用前景。植物纤维价廉易得,具有较大的强 度,刚度和耐热性。作为天然资料,植物纤维还可被 生物降解,植物纤维/ 热塑性树脂复合资料也因此具 备一定的环境相容性,是一条减轻目前“白色污染 〞的可行途径。因此,对植物纤维/ 聚丙烯复合资料 的研讨有着很重要的实际意义和适用价值。由于植 物纤维分子构造中含有大量的羟基,极性较强,与非 极性的聚丙烯混合时相互作用力很小,界面结合力 差,会影响复合资料的力学性能。故必需运用外表 改性剂对资料进展改性,以提高两种资料的界面结
苯甲酸含量对复合资料拉伸性能和冲击性能的影响
硬脂酸含量对复合资料力学性能的影响
以下图分别表示了在复合资料中参与了硬脂酸之 后,其拉伸性能和冲击性能的变化。从图 中可知, 复合资料的拉伸性能随硬脂酸含量的添加变化不

复合材料层合板的湿热效应课件

复合材料层合板的湿热效应课件

06
复合材料层合板湿热效 应的工程应用案例分析
工程应用背景介绍
复合材料层合板在航 空航天、汽车、船舶 等领域的广泛应用
复合材料层合板湿热 效应的研究意义
湿热环境对复合材料 层合板性能的影响
工程应用案例分析
案例一:航空航天领域中的应 用
复合材料层合板在飞机机身、 机翼等部位的应用
湿热环境对飞机性能的影响及 复合材料层合板的性能变化
数据处理
对实验数据进行整理、分析和处 理,提取关键参数,如吸湿率、
膨胀率、力学性能等。
结果解释
根据实验数据,分析复合材料层 合板在湿热环境下的性能变化规 律,探讨其影响因素,如温度、
湿度、材料组成等。
图表绘制
绘制各种性能参数随环境条件变 化的图表,直观展示复合材料层
合板的湿热效应。
实验结果的优化与应用

国外研究现状
国外对于复合材料层合板的湿热效 应研究较早,积累了丰富的经验和 成果,为国内研究提供了有益的借 鉴。
发展趋势
随着科技的不断发展,复合材料层 合板的湿热效应研究将更加深入, 涉及的领域将更加广泛。
主要研究方法与技术手段
研究方法
主要包括实验研究、数值模拟和 理论分析等方法。
技术手段
主要包括X射线衍射、扫描电子显 微镜、红外热像仪等先进技术手 段。
材料力学性能变化机制
湿度和温度都会影响材料的力学性能,包括弹性模量、屈 服强度、拉伸强度等。这些性能变化可能会影响材料在使 用过程中的安全性和可靠性。
03
复合材料层合板的湿热 效应研究现状
国内外研究现状及发展趋势
国内研究现状
国内对于复合材料层合板的湿热 效应研究起步较晚,但近年来发 展迅速,取得了一系列重要成果

教学课件:第六章-复合材料层合板的湿热效应

加强跨学科合作
复合材料层合板的湿热效应涉及到多个学科领域,如材料科学、物理学、化学和工程学等。因此,需要 加强跨学科合作,整合各学科的优势资源和技术手段,共同推进复合材料层合板湿热效应的研究进展。
THANKS FOR WATCHING
感谢您的观看
主要包括湿气的吸附、扩散和传 递,这些过程主要依赖于材料的 孔隙结构和湿度梯度。
化学过程
在某些情况下,湿气可能与复合 材料层合板中的组分发生化学反 应,导致材料的化学性质发生变 化。
04 复合材料层合板的湿热性 能测试
湿热性能测试的方法与标准
测试方法
采用标准ASTM D7379-17,通过在 湿热环境中对复合材料层合板进行周 期性温度和湿度循环,观察其性能变 化。
03 湿热效应的原理与影响
湿气的吸附与扩散
01
02
03
湿气吸附
当湿气与复合材料层合板 接触时,湿气分子会吸附 到材料的表面和孔隙中。
湿气扩散
吸附在材料中的湿气分子 会随着时间的推移,从高 湿度区域向低湿度区域扩 散。
湿度传递
湿气在复合材料层合板中 的传递是一个复杂的过程, 涉及到扩散、吸附和解吸 等物理和化学过程。
复合材料层合板的应用领域
• 总结词:复合材料层合板因其优异的性能和可定制的特点,在航空航天、 汽车、船舶、体育器材等领域得到了广泛应用。
• 详细描述:复合材料层合板因其高强度、高刚度、耐腐蚀、抗疲劳等优 异性能,在许多领域都有着广泛的应用。在航空航天领域,复合材料层 合板被用于制造飞机和卫星的结构件和蒙皮,以提高飞行器的性能和安 全性。在汽车领域,复合材料层合板被用于制造车身面板、车底板和发 动机罩等部件,以提高车辆的外观和性能。在船舶领域,复合材料层合 板被用于制造船体和甲板等部件,以提高船舶的耐腐蚀性和航行效率。 在体育器材领域,复合材料层合板被用于制造球拍、滑雪板、自行车等 运动器材,以提高运动员的成绩和安全性。

第七章-复合材料的湿热效应

讨论由湿热变化而引起的残余应力及应变。
无外载,即 N 0,M 0时,层合板的应变
等于湿热总应变:
ε xN 0T 0H z T H
而无约束时湿热自由总应变为:
exN x T x C
则残余应变为:
εxR εxN exN 0T 0H z T H xT xC
可见: xy 0 (为θ的奇函数)
二、单层板的湿膨胀系数
当吸水浓度为C时,则单层材料主方向的膨胀
系数可由下式定义:
12 3
H 1
H 2
H 12
1 C
C: 复合材料吸湿后的质量和干燥时的质量比。
1 , 2 为纵向,横向湿膨胀系数;
12 为纵横向湿交变系数,一般为0,则 :
H 1
残余应力为:
xR [Q (k) ] ε xR [Q (k) ]( ε xN e xN
0T 0H z T H x T x C)
作业:
仅有温升 T 和比湿度c,求[0/90]叠层的湿热 变形与应力。已知单层沿轴的 1 1
22
§7-6 层合板考虑湿热变形的强度分析
54.92
0 (GPa)
0
0 8.62
(主向) (非主向)
2、层合板的拉伸刚度A 及其逆阵A
24.42t 4.58t 0
A
4.58t
18.33t
0 (GPa)
0
0 8.62t
0.042 / t
A 0.0039/ t
0
0.0039/ t 0.0209/ t
0
0 0 (GPa1 ) 0.1160/ t
T
M
H
B
D
κ
另外有:
ε0 κ
ε0 M

复合材料力学(全套课件240P)


第一章、引言
复合材料力学
随直径减小,玻璃纤维拉伸强度趋 向于原子间的内聚强度11,000MPa
随直径减小,玻璃纤维拉伸强度 趋向于玻璃板材的强度170MPa
这是因为细小的纤维直径直接导致以下结果: 1) 更少、更小的微观裂纹;
2) 聚合物链延展并取向;
3) 结晶更少并且晶体间的断层密度更低;等等。
第一章、引言
复合材料力学
宏观力学(Macromechanical or phenomenological) 理论: 根据沿某些特定方向测试得到的复合材料的 宏观力学性能预报其受其它任意载荷的力学特性。 细观力学(Micromechanical)理论: 仅仅根据组成 材料的力学性能预报复合材料受任意载荷作用的 力学特性。 细观理论与宏观理论相比的优点: • 只需一次性确定组成材料的性能参数, 大大节省时间与金钱; • 可以事先由组成材料设计复合材料的性能。
第一章、引言
1.3 组成材料
1.3.1 增强体
复合材料力学
典型增强纤维
1) 玻璃纤维(Glass fiber) 分为E型、 S型、A型和C型,主要成份为SiO2, 另 含有些其它氧化物。 E (electrical insulator)型玻璃纤维应用最广, 1938 年实现商业化生产。现代复合材料诞生于1940年。 S型玻璃纤维比E型纤维的模量、强度及韧性都高, 但价格更高,最初主要是军用。
复合材料是由两种或两种以上性能各异的单一材 料,经过物理或者化学的方法组合而成的一种新 型材料。
复合材料分为天然与人工合成两大类。天然复合 材料种类繁多,包括一些动、植物组织如人的骨 格。我们只讨论人工合成复合材料 。 大多数人工合成的复合材料都是由两相构成:一个 是增强相,为非连续体;另一个是基体(matrix)相, 为连续体。

复合材料力学ppt


yx
y
yz
zx zy z
变形分析
物质坐标和空间坐标 应变张量的定义 微小应变张量的几何解释 主应变和应变主轴 应变协调方程
几何方程
x
u , x
yz
y
v , y
zx
z
w z
,
xy
w y
v z
;
u z
w ; x
v x
u y
.
x
yx
zx
xy y zy
x z
– 美国国防部委托国家科学研究院发表的面向21世纪国 防需求的材料研究报告指出
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式界面结合形式
• 复合材料的分类
– 按增强剂形状不同;可分为颗粒 连续纤维 短纤维 弥散晶须 层状 骨架或网状 编织体增强复合材料 等
– 按照基体材料的不同;复合材料包括聚合物基复合 材料 金属基复合材料 陶瓷基复合材料 碳/碳复合 材料等
y z
z
变形协调方程
2 x y 2
2 y x 2
2 xy xy
2 y z 2
2 z y 2
2 yz yz
2 z x 2
2 x z 2
2 xz zx
x
xz y
xy z
yz x
2 2x yz
y
xy z
yz x
zx y
2 2y zx
z
yz x
zx y
xy z
2 2z xy
物理方程— 本构关系 Hooke 定理
on S :
s
u u*
v v*
w w*
• 第三类基本问题
– 在弹性体的一部分表面上都给定了外力;在 其余的表面上给定了位移;要求确定弹性体 内部及表面任意一点的应力和位移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档