实验8 集成计数器及寄存器的应用
实验8移位寄存器逻辑功能测试及应用

实验8移位寄存器逻辑功能测试及应用一、实验目的1.了解移位寄存器的基本原理及逻辑功能。
2.掌握移位寄存器的逻辑功能测试方法。
3.学会使用移位寄存器进行逻辑功能的实际应用。
二、实验器材数字逻辑实验箱、示波器、连接线。
三、实验原理移位寄存器是一种能够存储和移动数据的逻辑电路。
它由多个触发器组成,每个触发器都与相邻的触发器连接,形成环形结构。
移位寄存器中的数据可以通过输入口输入,通过时钟信号控制触发器的状态变化,从而实现数据的移动。
移位寄存器有三种基本的逻辑功能:1.移动功能:数据可以向左或向右移动一个位置。
2.并行转移功能:数据可以从一个移位寄存器转移到另一个移位寄存器。
3.并行加载功能:可以将数据同时加载到多个触发器中。
四、实验步骤1.按照实验电路图连接实验电路。
将四个LED灯分别连接到74LS194寄存器的Q0、Q1、Q2、Q3输出端,将四个开关分别连接到74LS194寄存器的A、B、C、D输入端。
将实验箱提供的方波电压输入到74LS194寄存器的CP时钟输入端。
2.打开示波器,并将示波器的探头连接到74LS194寄存器的CP时钟输入端。
3.调整示波器的时间基准,使波形在示波器的显示屏上能够清晰可见。
调整示波器的垂直放大倍数,使波形的幅度适中。
4.分别将开关1、2、3、4打开或关闭,观察LED灯的亮灭情况,并观察示波器上的波形变化。
五、实验结果分析根据实验步骤中的操作,可以得到如下运行结果:1.当开关1打开时,移位寄存器内的数据向右移动一个位置,即Q3→Q2→Q1→Q0→Q3、LED灯的亮灭情况和示波器上的波形变化均符合预期,实验成功。
2.当开关2打开时,移位寄存器内的数据向左移动一个位置,即Q0→Q3→Q2→Q1→Q0。
LED灯的亮灭情况和示波器上的波形变化均符合预期,实验成功。
3.当开关3打开时,移位寄存器内的数据从最右端向左移动一个位置,即Q3→Q3→Q2→Q1→Q0。
LED灯的亮灭情况和示波器上的波形变化均符合预期,实验成功。
北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。
引脚图功能表其中X。
3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。
集成计数器 实验报告

集成计数器实验报告
《集成计数器实验报告》
实验目的:
本次实验旨在通过集成计数器实验,了解集成计数器的工作原理、结构和应用。
实验设备:
1. 集成计数器
2. 示波器
3. 电源
4. 连接线
实验原理:
集成计数器是一种数字电路,能够将输入的脉冲信号进行计数并输出相应的计
数结果。
集成计数器由多个触发器、门电路和时钟信号组成,通过这些元件的
组合和连接,实现了计数功能。
实验步骤:
1. 将集成计数器连接至电源,并接入示波器进行观测。
2. 输入脉冲信号,观察集成计数器的计数过程,并记录输出结果。
3. 调整输入脉冲信号的频率,观察集成计数器的响应情况。
4. 分析实验数据,总结集成计数器的特性和应用。
实验结果:
通过实验观察和数据记录,我们发现集成计数器能够准确地对输入的脉冲信号
进行计数,并输出相应的计数结果。
当输入脉冲信号的频率发生变化时,集成
计数器能够及时地进行计数更新,表现出良好的响应性能。
实验结论:
集成计数器是一种常用的数字电路元件,广泛应用于计数、计时、频率分析等
领域。
通过本次实验,我们对集成计数器的工作原理和特性有了更深入的了解,为今后的电子技术应用打下了良好的基础。
总结:
集成计数器作为数字电路中的重要组成部分,具有广泛的应用前景。
通过实验,我们深入了解了集成计数器的工作原理和特性,为今后的学习和应用奠定了基础。
希望通过不断的实践和学习,能够更好地掌握集成计数器的应用技术,为
电子技术的发展做出更大的贡献。
集成计数器及寄存器

实验六 集成计数器及寄存器及寄存器
五、实验报告
1. 整理实验内容和各实验数据。 2.画出实验内容上、2所要求的电路图及波形图。
3.总结计数器使用特点。
实验六 集成计数器及寄存器
下次预习内容
实验八 波形产生及单稳态触发器
实验六 集成计数器及寄存器
六、实验结束
出 2 分频信号,即实现二进制计数。当 1不加信号,计数脉冲从 CP2码,最高位 输入时, D、 码接法,先模 5计数,后模2计数,由 QACP 、Q D、 QC、 Q01 B、 输出 5421 BCD 置 9 都是异步操作,而且置 9是优先的,所以称 R R02 为异步清 0端,SQ 91 、 、QB实现五进制计数。 Q AC 作进位输出,波形对称。 SQ 为异步置 9端。
92 91 92 01 02
实验六 集成计数器及寄存器
四、实验内容
1、集成计数器74LS90功能测试。 • 74LS90 是二一五一十进制异步计数器。具有下述功能: 1)直接置0(R0(1) •R0(2) =1),直接置9(S9(1) •S9(2) =1) 2)二进制计数(Cp1输入;Qa输出) 3)五进制计数(CP2输入 ;Qd,Qc,Qb输出)
清 0 0 × 1 置 9 × 0 1 时 CP1 × × ↓ 钟 CP2 × × 1 ↓ QA ↓ R0(1)、R0(2) 1 0 × 1 × 0 S9(1)、S9(2) QD 0 1 QA
输 QC 0 0 输
出 QB 0 0 0 1 出 QA 功 能
异步清 0 异步置 9 二进制计数 五进制计数 十进制计数 十进制计数
注意:
R0 均为高电平有效 0 、R9 × 0 × × 为下降沿触发 0 × 0 CP
1 ↓ QD
实验集成计数器实验报告要求

实验集成计数器实验报告要求
一、实验目的
本实验的目的是通过实验掌握集成计数器的工作原理和使用方法,进一步加深对数字逻辑电路的理解。
二、实验原理
集成计数器是一种用于计数和计时的数字电路,它可以实现对
输入脉冲的计数和显示。
在实验中,我们使用的是常见的74系列集成计数器,这些芯片具有低功耗、稳定性高等特点。
三、实验器材
本实验需要的器材和元器件有:74系列集成计数器芯片、电源、示波器、连线等。
四、实验步骤
1. 按照实验电路图连接实验装置,将74系列集成计数器芯片正确插入实验板上。
2. 按照实验板上的引脚定义,逐一连接芯片的输入端和输出端,确保连接的正确性。
3. 打开电源,给芯片供电。
4. 发送输入脉冲,观察集成计数器的计数情况。
5. 使用示波器检测芯片的输出波形,观察计数器的计数过程。
6. 调整输入脉冲的频率,观察计数器的计数速度变化。
7. 分析实验结果,并记录相关数据。
五、实验注意事项
1. 在连接实验器材时,确保插接正确,避免反接或短路等情况
出现。
2. 实验过程中应注意安全,避免触电和烧毁元器件的情况发生。
3. 实验过程中需要认真记录实验数据,包括输入脉冲频率、计
数器的计数情况、输出波形等。
4. 在实验结束后,及时关闭电源,避免长时间供电造成损坏。
六、实验结果及分析。
集成计数器及其应用实验报告

集成计数器及其应用实验报告一、实验目的本实验旨在通过集成计数器及其应用的实验,使学生了解集成计数器的工作原理和应用场景,掌握计数器的使用方法。
二、实验原理1. 集成计数器集成计数器是一种数字电路元件,它能够在输入信号的作用下进行计数,并将结果输出。
常见的集成计数器有74LS90、74LS93、74LS161等。
2. 74LS90集成计数器74LS90是一种4位二进制同步上升计数器,它有四个输入端口:CLK (时钟输入)、RST(复位输入)、QA、QB、QC和QD(输出端口)。
CLK端口接收时钟信号,RST端口接收复位信号,QA、QB、QC和QD则分别输出二进制码的各位。
3. 74LS47译码器74LS47是一种BCD-7段译码器,它能够将BCD码转换为7段LED显示码。
该元件有四个输入端口:A、B、C和D(接收BCD码),以及七个输出端口:a~g(分别对应7段LED显示管)。
三、实验设备与材料1. 实验设备:示波器、数字万用表等。
2. 实验材料:7400系列芯片(包括74LS90和74LS47)、7段LED数码管、电阻、电容、开关等。
四、实验步骤1. 搭建74LS90计数器电路将74LS90计数器与时钟信号发生器连接,同时接入LED显示管,以观察计数器的工作情况。
具体电路图如下:2. 测试74LS90计数器将开关S1打开,使时钟信号发生器开始工作,此时可以观察到LED 显示管上数字不断增加。
当数字达到9时,会自动清零并从0开始重新计数。
3. 搭建74LS47译码器电路将74LS47译码器与LED显示管连接,以便将BCD码转换为7段LED显示码。
具体电路图如下:4. 测试74LS47译码器将BCD码输入至74LS47译码器中,可以观察到相应的数字在7段LED显示管上显示出来。
五、实验结果及分析通过以上实验步骤,我们成功搭建了集成计数器和译码器的电路,并测试了其工作情况。
在测试过程中,我们发现集成计数器能够准确地进行计数,并在达到最大值后自动清零;而译码器则能够将BCD码转换为7段LED显示码,并在LED显示管上正确地显示出来。
数字电路 实验 计数器及其应用 实验报告

实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
计数器计数时所经历的独立状态总数为计数器的模(M)。
计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。
按计数脉冲输入方式不同,可分为同步计数和异步计数。
按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。
1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。
若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。
2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。
当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。
执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。
集成计数器及寄存器的运用 实验报告

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载集成计数器及寄存器的运用实验报告地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容电子通信与软件工程系2013-2014学年第2学期《数字电路与逻辑设计实验》实验报告---------------------------------------------------------------------------------------------------------------------班级:姓名:学号:成绩:同组成员:姓名:学号: ---------------------------------------------------------------------------------------------------------------------实验名称:集成计数器及寄存器的运用二、实验目的: 1.熟悉集成计数器逻辑功能和各控制端作用。
2.掌握计数器使用方法。
实验内容及步骤:1.集成计数器74LS90功能测试。
74LS90是二一五一十进制异步计数器。
逻辑简图为图8.1所示。
图8.174LS90具有下述功能:·直接置,直接置9(S9(1,·S,.:,=1)·二进制计数(CP、输入QA输出)·五进制计数(CP2输入QDQCQB箱出)·十进制计数(两种接法如图8.2A、B所示)·按芯片引脚图分别测试上述功能,并填入表 8.1、表8.2、表8.3中。
图8.2 十进制计数器2. 计数器级连分别用2片74LS90计数器级连成二一五混合进制、十进制计数器。
3. 任意进制计数器设计方法采用脉冲反馈法(称复位法或置位法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验8、 集成计数器及寄存器的应用
一、实验目的
1.熟悉集成计数器逻辑功能和各控制端作用。
2.掌握计数器使用方法。
二、实验仪器及材料
1.双踪示波器
2.器件 74LS90 十进制计数器 2片
74LS00 二输入端四与非门 1片
三、实验内容及步骤
1.集成计数器74LS90功能测试。
74LS90是二一五一十进制异步计数器。
逻辑简图为图
8.1所示。
图8.1
74LS90具有下述功能:
·直接置0(1)0(2)0(.1)R R ,直接置9(S9(1,·S ,.:,=1)
·二进制计数(CP 、输入QA 输出)
·五进制计数(CP 2输入Q D Q C Q B 箱出)
·十进制计数(两种接法如图8.2A 、B 所示)
按芯片引脚图分别测试上述功能,并填入表 8.1、表8.2、表8.3中。
图8.2 十进制计数器
2. 计数器级连
分别用2片74LS90计数器级连成二一五混合进制、十进制计数器。
(1)画出连线电路图。
(2)按图接线,并将输出端接到数码显示器的相应输入端,用单脉冲作为输入脉冲验证设计是否正确。
(3)画出四位十进制计数器连接图并总结多级计数级连规律。
表8.1 功能表
表8.2 二-五混合进制表8.3 十进制
3. 任意进制计数器设计方法
采用脉冲反馈法(称复位法或置位法)。
可用74LS90组成任意模(M)计数器。
图8.3是用74LS90实现模7计数器的两种方案,图(A)采用复位法。
即计数计到M异步清0。
图(B)采用置位法,即计数计到M一1异步置0。
图8.3 74LS90 实现七进进制计数方法
(1)按图8.3接线,进行验证。
(2)设计一个九进制计数器并接线验证。
(3)记录上述实验的同步波形图。
四、实验报告
1.整理实验内容和各实验数据。
2.画出实验内容所要求的电路图及波形图。
3. 总结计数器使用特点。