一均值比较和T检验及F检验
参数显著性检验公式t检验F检验的计算公式

参数显著性检验公式t检验F检验的计算公式参数显著性检验公式——t检验、F检验的计算公式在统计学中,参数显著性检验是一种用于验证模型参数是否显著的方法。
在进行参数显著性检验时,我们可以使用t检验或F检验来计算参数的显著性。
一、t检验公式t检验用于检验一个样本的均值是否与总体均值存在显著差异,或者用于检验两个样本的均值是否存在显著差异。
其计算公式如下:t = (x - μ) / (s / √n)其中,t为t值,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。
根据t检验的结果,我们可以通过查表或计算获得对应的p值,进而判断参数的显著性。
二、F检验公式F检验主要用于检验两个或多个样本方差是否存在显著差异。
其计算公式如下:F = (s1² / s2²)其中,F为F值,s1²为第一个样本的方差,s2²为第二个样本的方差。
同样地,根据F检验的结果,我们可以通过查表或计算获得对应的p 值,从而判断参数的显著性。
需要注意的是,t检验和F检验都是基于假设检验的方法。
在进行参数显著性检验时,我们需要先设定原假设和备择假设,并通过计算得到的t值或F值与对应的临界值进行比较,最终得出对参数的显著性结论。
总结起来,参数显著性检验公式中的t检验和F检验是常用的统计方法,用于判断参数的显著性。
通过计算得到的t值或F值与对应的临界值进行比较,可以得出对参数显著性的结论。
在实际应用中,我们可以根据数据类型和问题特点选择合适的显著性检验方法,并利用相应的计算公式进行计算。
这些检验方法在科学研究、社会调查和数据分析等领域具有广泛的应用。
常用的方法有两种:t检验法和F检验法

常用的方法有两种:t检验法和F检验法。
分析工作中常遇到两种情况:样品测定平均值和样品标准值不一致;两组测定数据的平均值不一致。
需要分别进行平均值与标准值比较和两组平均值的比较。
平均值与标准值比较两组平均值的比较
1. 比较方法
用两种方法进行测定,结果分别为,S,n; ,S,n。
然后分别用F检验法及t 检验法计算后,比较两组数据是否存在显著差异。
2. 计算方法
(1)精密度的比较——F检验法:
①求F计算: F=>1
②由F表根据两种测定方法的自由度,查相应F值进行比较。
【表2-295%置信水平(a=0.05)时单侧检验F值(部分)】
③若F>F,说明 S和S差异不显著,进而用t检验平均值间有无显著差异。
若
F>F,S和S差异显著。
(2)平均值的比较:
①求t:t=
若S与S无显著差异,取S作为S。
②查t值表,自由度f=n+n-2。
③若t>t,说明两组平均值有显著差异。
例:Na CO试样用两种方法测定结果如下:
方法1:=42.34,S=0.10,n=5。
方法2:=42.44,S=0.12,n=4。
比较两结果有无显著差异。
【解答过程】
解:①先用F检验法检验S与S:
F==1.44
查F表
横行是S,纵行是S,
其中:f=4-1=3,f=5-1=4,F=6.59。
F<F,说明S与S无显著差异。
作出这种判断的可靠性达95%。
查表f=4-1=3,f=5-1=4,F=6.59。
F<F,说明S与S无显著差异。
常用统计方法:T检验、F检验、卡方检验

常用统计方法:T检验、F检验、卡方检验介绍常用的几种统计分析方法:T检验、F检验、卡方检验一、T检验(一)什么是T检验T检验是一种适合小样本的统计分析方法,通过比较不同数据的均值,研究两组数据是否存在差异。
主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。
(二)T检验有什么用1.单样本T检验用于比较一组数据与一个特定数值之间的差异情况。
样例:难产儿出生数n = 35,体重均值 = 3.42,S = 0.40,一般婴儿出生体重μ0= 3.30(大规模调查获得),问相同否?求解代码:from scipy import statsstats.ttest_1samp(data,sample)检验一列数据的均值与sample的差异是否显著。
(双侧检验)若为单侧检验,则将p值除以22.配对样本的T检验(ABtest)用于检验有一定对应关系的样本之间的差异情况,需要两组样本数相等。
常见的使用场景有:①同一对象处理前后的对比(同一组人员采用同一种减肥方法前后的效果对比);②同一对象采用两种方法检验的结果的对比(同一组人员分别服用两种减肥药后的效果对比);③配对的两个对象分别接受两种处理后的结果对比(两组人员,按照体重进行配对,服用不同的减肥药,对比服药后的两组人员的体重)。
AB测试时互联网运营为了提升用户体验从而获得用户增长而采用的精细化运营手段,简单的说就是分为A版本和B版本哪个更能吸引用户使用。
目的:检验两个独立样本的平均值之差是否等于目标值样例:比较键盘A版本和B版本哪个更好用,衡量标准:谁在规定时间内打错字少,或者两者差异不大求解代码:ttest_rel(data1,data2) (得出的p值是双侧检验的p值)3.独立样本的T检验(要求总体方差齐性)独立样本与配对样本的不同之处在于独立样本T检验两组数据的样本个数可以不等。
样例:比较男生与女生的专业和职业任职得分的均值是否存在显著差异,可采用独立样本T检验进行分析。
统计百科:t检验f检验卡方检验

什么是Z检验〔U检验〕?Z检验是一般用于大样本〔即样本容量大于30〕平均值差异性检验的方法。
它是用标准正态分布的理论来推断差异发生的概率,从而比拟两个平均数>平均数的差异是否显著。
当标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。
Z检验的步骤第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。
第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。
1、假如检验一个样本平均数〔〕与一个的总体平均数(μ0)的差异是否显著。
其Z值计算公式为:其中:是检验样本的平均数;μ0是总体的平均数;S是样本的方差;n是样本容量。
2、假如检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。
其Z值计算公式为:其中:是样本1,样本2的平均数;S1,S2是样本1,样本2的标准差;n1,n2是样本1,样本2的容量。
第三步:比拟计算所得Z值与理论Z值,推断发生的概率,根据Z值与差异显著性关系表作出判断。
如下表所示:第四步:根据是以上分析,结合详细情况,作出结论。
Z检验举例某项教育技术实验,对实验组和控制组的前测和后测的数据分别如下表所示,比拟两组前测和后测是否存在差异。
实验组和控制组的前测和后测数据表前测实验组n1 = 50 S1a = 14控制组n2 = 48 S2a = 16后测实验组n1 = 50 S1b = 8控制组n2 = 48 S2b = 14由于n>30,属于大样本,所以采用Z检验。
由于这是检验来自两个不同总体的两个样本平均数,看它们各自代表的总体的差异是否显著,所以采用双总体的Z检验方法。
计算前要测Z的值:∵|Z|=0.658<1.96∴ 前测两组差异不显著。
再计算后测Z的值:∵|Z|= 2.16>1.96∴ 后测两组差异显著。
什么是T检验?T检验,亦称student t检验〔Student's t test〕,主要用于样本含量较小〔例如n<30〕,总体标准差σ未知的正态分布资料。
一 均值比较和T检验及F检验

t
X1 X 2
2 X 2 X X 2 X1
2 1 2
n 1
=
79.5 71 9.1242 9.9402 2 0.704 9.124 9.940 10 1
பைடு நூலகம்
=3.459。 第三步 判断 根据自由度 df n 1 9 ,查 t 值表 t (9)0.05 2.262 , t (9)0.01 3.250 。由于实际计 算出来的 t =3.495>3.250= t (9)0.01 ,则 P 0.01 ,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用 Z 检验还是使用 t 检 验必须根据具体情况而定,为了便于掌握各种情况下的 Z 检验或 t 检验,我们用以下一览表 图示加以说明。
已知时,用 Z
X
n
单总体
未知时,用 t
X (df n 1) S n
在这里, S 表示总体标准差的估计量,它与样本标准差 X 的关系是:
S
n X n 1
1 , 2 已知且是独立样本时,用
T 检验原理及公式
t 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 t 检验分为单总体 t 检验和双总体 t 检验。当总体呈正态分布,如果总体标准差未知,而且样 本容量 n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈 t 分布。
对于要使用 T 检验进行均值比较的变量应该是正态分布的。 如果分析变量明显是非正态 分布的,应该选择非参数检验过程。
II 双总体 t 检验
双总体 t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体 t 检验又分为两种情况 一. 独立样本 t 检验 (检验假设:两个独立样本的 t 检验用于检验两个不相关的样本来自具有相同均值的 总体) 独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检 验用于检验两组非相关样本被试所获得的数据的差异性。 独立样本 T 检验要求被检验的两个样本方差要求具有齐性, 如果不齐, 使用校正公式计 算 T 值和自由度。因此,在输出结果中,应该先检查方差齐性(F 检验) ,根据齐性的结果, 在输出表格中选择 T 检验的结果。 二. 相关(配对)样本 t 检验。 (检验假设:配对样本 t 检验(Paired Sample T test)用于检验两个相关的样本是 否来自具有相同均值的总体) 相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组 被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本或配对样 本。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似, 只不过 r 0 。 相关样本的 t 检验公式为:
实验室比对结果评价的3种方法

比对试验:即按照预先规定的条件,由两个或多个实验室或实验室内部对相同或类似的被测物品进行检测的组织、实施和评价。
对于结果评价一般大家熟悉的Z比分直,En 值外,我们下面介绍三种另外的评价方法,即格鲁布斯(Grubbs)检验、F检验、t检验。
1格鲁布斯(Grubbs)检验格鲁布斯检验是离散值检验的一种,主要目的是剔除异常数据,对任何一组数据进行处理,首先要检验其是否存在有过失误差带来的异常数据,即进行离散值检验。
格鲁布斯检验是离散值检验中最好的方法,具体操作为:1.将一组数据从小到大按顺序排列:x1、x2、x3、……xn;2.求这组数据的平均值x及标准偏差S,然后求统计量T,T= (xn-x)/s;3.假设若xn为离散值,则T= (xn-x)/s;所得结果T与格鲁布斯检验值表所得临界值Ta,n值比较(a为显著性水平,n为样本量)。
4.如果T≥Ta,n,说明是离散值,必须舍去;反之,予以保留,Ta,n由查表得到。
如果通过格鲁布斯检验出离散值,应剔除,然后重新进行统计计算,以更进行下一步的统计分析。
2F检验一组数据的标准偏差(S)可以反映出该组数据的精密度,精密度决定于随机误差,不同组数据,有不同的精密度,两组数据的精密度之间有无显著性差异,需要进行F 检验,F检验的目的在于比较两个样本的精密度有无显著性差异。
具体操作如下:1. 求出两个实验室(两组数据)的标准偏差,S1、S2,定义 F=S12 /S22 其中S12≥S22,2.查F分布表,得到Fα/2(n1-1,n2-1)的值,若F≤Fα/2(n1-1,n2-1),则说明二者的精密度之间不存在显著性差异,反之,则存在显著性差异。
通过F检验,可以判断实验室间测量精密度有无显著性差异。
3t 检验t检验的目的就是比较两组数据的平均值之间是否存在显著性差异。
按如下公式计算t值:其中比较计算得到的t值和查表的临界值T值,如果t值<T 值,那么两组数据无显著性差异,反之,则存在显著性差异。
u检验、t检验、F检验、X2检验

u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
统计学常用概念:T检验、F检验、卡方检验、P值、自由度

统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单总体
已知时,用
Z
X
n
未知时,用 t
X S
(df
n 1)
n
在这里, S 表示总体标准差的估计量,它与样本标准差 X 的关系是:
S
n
n
1
X
双总体
1 , 2 已知且是独立样本时,用
X1 X2
12
2 2
n1 n2
是独立大样本时,用 Z
X1 X2
2
2
X1
X2
n1 n2
算 T 值和自由度。因此,在输出结果中,应该先检查方差齐性(F 检验),根据齐性的结果, 在输出表格中选择 T 检验的结果。
二. 相关(配对)样本 t 检验。 (检验假设:配对样本 t 检验(Paired Sample T test)用于检验两个相关的样本是 否来自具有相同均值的总体) 相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组 被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本或配对样 本。
检验步骤为:
第一步 建立原假设 H0∶1 = 2
第二步 计算 t 值
t
X1 X2
2 X1
2 X
2
2 X1 X2
n 1
=
79.5 71
9.1242 9.9402 2 0.704 9.124 9.940
10 1
=3.459。 第三步 判断
根据自由度 df n 1 9 ,查 t 值表 t(9)0.05 2.262, t(9)0.01 3.250 。由于实际计
2. 统计学意义(P 值或 sig 值)
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p 值为结果 可信程度的一个递减指标,p 值越大,我们越不能认为样本中变量的关联是总体中各变量关 联的可靠指标。p 值是将观察结果认为有效即具有总体代表性的犯错概率。如 p=0.05 提示 样本中变量关联有 5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我 们重复类似实验,会发现约 20 个实验中有一个实验,我们所研究的变量关联将等于或强于 我们的实验结果。(这并不是说如果变量间存在关联,我们可得到 5%或 95%次数的相同结 果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。) 在许多研究领域,0.05 的 p 值通常被认为是可接受错误的边界水平。
检验又分为两种情况 一. 独立样本 t 检验 (检验假设:两个独立样本的 t 检验用于检验两个不相关的样本来自具有相同均值的
总体) 独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检
验用于检验两组非相关样本被试所获得的数据的差异性。 独立样本 T 检验要求被检验的两个样本方差要求具有齐性,如果不齐,使用校正公式计
2. 在 t-test for Equality of Means 中,第一排(Variances=Equal)的情况:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99 既然 Sig=.000,亦即,两样本均数差别有显著性意义!
3. 到底看哪个 Levene's Test for Equality of Variances 一栏中 sig,还是看 t-test for Equality of Means 中那个 Sig. (2-tailed)啊? 答案是:两个都要看。 先看 Levene's Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两 方差齐(Equal Variances),故接著的 t 检验的结果表中要看第一排的数据,亦即方差齐的情 况下的 t 检验的结果。 反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的 t 检验的结果表中要看第二排的数据,亦即方差不齐的情况下的 t 检验的结果。
1 , 2 未知
是独立小样本时,用 t
X1 X2
(n1 1)S12 (n2 1)S22 ( 1 1 )
n1 n2 2
n1 n2
(df n1 n2 2)
是相关样本(配对样本)时,用 t
X1 X2 S12 S22 2rS1S2
n
3,T 检验和 F 检验的关系
t 检验过程,是对两样本均数(mean)差别的显著性进行检验。惟 t 检验须知道两个总体的方 差(Variances)是否相等;t 检验值的计算会因方差是否相等而有所不同。也就是说,t 检验 须视乎方差齐性(Equality of Variances)结果。所以,SPSS 在进行 t-test for Equality of Means 的同时,也要做 Levene's Test for Equality of Variances 。
4.你做的是 T 检验,为什么会有 F 值呢? 就是因为要评估两个总体的方差(Variances)是否相等,要做 Levene's Test for Equality of Variances,要检验方差,故所以就有 F一就是要符合方差齐次性,这点需要 F 检验 来验证。
现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,
只不过 r 0 。 相关样本的 t 检验公式为:
t
X1 X2
。
2 X1
2 X
2
2 X1 X2
n 1
在这里, X1 , X 2 分别为两样本平均数;
2 X1
,
2 X
2
分别为两样本方差;
为相关样本的相关系数。
例:在小学三年级学生中随机抽取 10 名学生,在学期初和学期末分别进行了两次推理 能力测验,成绩分别为 79.5 和 72 分,标准差分别为 9.124,9.940。问两次测验成绩是否有 显著地差异?
每一种统计方法的检定的内容都不相同,同样是 t-检定,可能是上述的检定总体中是否存在 差异,也同能是检定总体中的单一值是否等於 0 或者等於某一个数值。
至於 F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说 的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有 关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances) 检验等情况。
I 单总体 t 检验
(检验假设:检验单个变量的均值是否与给定的常数之间存在差异。即样本均值与总体均 值相等的假设)
单总体 t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显著。当总体分
布是正态分布,如总体标准差 未知且样本容量 n <30,那么样本平均数与总体平均数的离
差统计量呈 t 分布。检验统计量为:
Means 过程
SPSS 的均值比较过程(MEANS)用于分组计算、比较指定变量的描述性统计量,如总 和、均值、方差、标准差、观测数等,还可以给出方差分析表和线性检验结果等信息。当观 测量按一个分类变量分组时,MEANS 过程可以进行分组计算看。
正态分布
正态分布又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域 都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量 X 服从一个数 学期望为 μ、标准方差为 σ2 的高斯分布,记为:则其概率密度函数为正态分布的期望值 μ 决定了其位置,其标准差 σ 决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为 钟形曲线。我们通常所说的标准正态分布是 μ = 0,σ = 1 的正态分布。
T 检验原理及公式
t 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 t 检验分为单总体 t 检验和双总体 t 检验。当总体呈正态分布,如果总体标准差未知,而且样 本容量 n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈 t 分布。
对于要使用 T 检验进行均值比较的变量应该是正态分布的。如果分析变量明显是非正态 分布的,应该选择非参数检验过程。
t
X X
。
n 1
如果样本是属于大样本( n >30)也可写成:
t
X X
。
n
在这里, t 为样本平均数与总体平均数的离差统计量;
X 为样本平均数; 为总体平均数;
X 为样本标准差; n 为样本容量。
方差齐时使用公式
t x1 x2
Sc
11 n1 n2
其中 是合并方差
Sc
(x1 x1)2 (x2 x2 )2 n1 n2 2
t
X X
79.2 17
73
1.63
n 1
19
第三步 判断
因为,以 0.05 为显著性水平, df n 1 19 ,查 t 值表,临界值 t(19)0.05 2.093 , 而样本离差的 t 1.63 小与临界值 2.093。所以,接受原假设,即进步不显著。
II 双总体 t 检验
双总体 t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体 t
1. 在 Levene's Test for Equality of Variances 一栏中 F 值为 2.36, Sig.为.128,表示方差齐 性检验「没有显著差异」,即两方差齐(Equal Variances),故下面 t 检验的结果表中要看第 一排的数据,亦即方差齐的情况下的 t 检验的结果。
3. T 检验和 F 检验
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的 t 检验。 两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体, 代表总体的情况也是存在著差异呢? 会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这 2 样本的数值不同? 为此,我们进行 t 检定,算出一个 t 检定值。 与统计学家建立的以「总体中没差别」作基础的随机变量 t 分布进行比较,看看在多少%的 机会(亦即显著性 sig 值)下会得到目前的结果。 若显著性 sig 值很少,比如<0.05(少於 5%机率),亦即是说,「如果」总体「真的」没有差 别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。虽然还 是有 5%机会出错(1-0.05=5%),但我们还是可以「比较有信心」的说:目前样本中这情况(男 女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假 设应予拒绝,简言之,总体应该存在著差异。