高中数学函数问题常见习题类型及解法
函数常见题型及其解答

函数常见题型及其解答函数是高中数学的重要内容之一,也是高考的重点和难点。
在学习函数的过程中,同学们可能会遇到各种类型的题目,本文将介绍一些常见的题型及其解答方法。
一、求函数的定义域定义域是函数的基础,求函数的定义域是常见的问题之一。
常见的方法有:1. 观察法:根据函数解析式,直接观察出其定义域。
2. 分式法:对于分式函数,需要保证分母不为0。
3. 偶次根式法:对于偶次根式函数,需要保证被开方数非负。
4. 对数法:对于对数函数,需要保证对数的真数大于0。
5. 复合法:对于含有多个函数的式子,需要保证每个函数都有意义。
例题:求函数f(x) = 的定义域。
解答:由已知可得,要使函数有意义,需满足:3x - 4 > 0,解得x > 4/3。
所以函数的定义域为{x︱x > 4/3}。
二、求函数的解析式求函数的解析式是另一个常见的问题。
常见的方法有:1. 直接法:根据已知的函数表达式,直接求出未给出的函数表达式。
2. 换元法:对于某些复杂的表达式,可以通过换元法简化表达式。
3. 待定系数法:通过设出函数表达式中的系数,再根据已知条件求出这些系数。
例题:已知函数f(x)满足f(x) + f(2 - x) = 2,求f(x)的解析式。
解答:设f(x) = kx + b,则f(2 + x) = k(x + 2) + b + k = kx + 2k + b + b = 2,解得k = - 1,b = 0,所以f(x)的解析式为f(x) = - x。
三、函数的性质与图像函数的性质和图像是函数的重要内容之一。
常见的题型有:1. 求函数的单调区间、极值和最值。
2. 根据函数的性质和图像,分析函数的特征和变化规律。
3. 根据已知条件,画出函数的图像。
例题:已知函数f(x)在定义域内为减函数,且f(x - 1) >f(1),求函数的单调区间。
解答:由题意可知,函数f(x)在定义域内为减函数,且f(x - 1) > f(1),所以x - 1 < 1 < x,即- 1 < x < 2,函数的单调递减区间为( - 1,2)。
二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。
本文将对二次函数零点问题的题型和解题方法进行总结。
题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。
2. 零点的个数:给定一个二次函数,要求计算其零点的个数。
3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。
4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。
解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。
以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。
通过代入方程中的系数,即可得到方程的解。
2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。
若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。
3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。
4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。
总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。
在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。
希望本文对您理解和解决二次函数零点问题有所帮助。
高中函数题型及解题方法

高中函数题型及解题方法在高中数学学习中,函数是一个非常重要的内容,也是学生们比较头疼的一个知识点。
函数题型涉及到了很多不同的情况和解题方法,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型及解题方法。
1. 一次函数。
一次函数是最基本的函数之一,其一般式为y=kx+b。
在解题时,可以根据函数的斜率和截距来确定函数的性质,例如斜率为正表示函数单调递增,斜率为负表示函数单调递减,截距表示函数与y轴的交点等。
2. 二次函数。
二次函数的一般式为y=ax^2+bx+c。
解二次函数题型时,可以利用函数的开口方向、顶点坐标、对称轴、判别式等性质来进行分析,从而解决问题。
3. 指数函数和对数函数。
指数函数和对数函数是一对互逆函数,其性质和解题方法有很多特点,包括增减性、奇偶性、周期性等,需要根据具体问题来进行分析和解答。
二、函数图像与函数性质题型及解题方法。
1. 函数图像的性质。
在解题过程中,可以通过函数的导数、极值、拐点等性质来确定函数的图像特点,例如凹凸性、单调性、零点、极值点等。
2. 函数性质的应用。
在实际问题中,函数的性质经常被用来解决各种实际问题,例如最值问题、最优化问题、变化率问题等,需要根据函数的性质来建立方程并求解。
三、函数的综合运用题型及解题方法。
1. 函数的综合运用。
在综合题型中,通常会涉及到多个函数的综合运用,需要根据题目所给条件来建立方程并求解,同时要注意函数之间的关系和相互影响。
2. 函数的应用拓展。
除了基本的函数题型外,还会有一些应用拓展的函数题型,例如函数的复合、函数的逆、函数的复合逆等,需要根据具体情况来进行分析和解答。
总结,高中函数题型及解题方法涉及到了很多不同的情况和解题方法,需要学生们掌握函数的基本性质和解题技巧,同时要注重实际问题的应用和拓展,通过练习和思考来提高自己的解题能力。
希望本文的总结能够帮助学生们更好地掌握高中函数的知识,提高数学学习的效果。
高中数学解题方法系列:函数中“恒成立问题”的类型及策略

高中数学解题方法系列:函数中“恒成立问题”的类型及策略一、恒成立问题地基本类型在数学问题研究中经常碰到在给定条件下某些结论.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立。
某函数地定义域为全体实数R 。
●某不等式地解为一切实数。
❍某表达式地值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数地性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生地综合解题能力,在培养思维地灵活性、创造性等方面起到了积极地作用.因此也成为历年高考地一个热点.恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数地奇偶性、周期性等性质;⑤直接根据函数地图象.二、恒成立问题解决地基本策略<一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min)]([)(x f m D x x f m≤⇔∈≤上恒成立在如何在区间D 上求函数f(x>地最大值或者最小值问题,我们可以通过习题地实际,采取合理有效地方法进行求解,通常可以考虑利用函数地单调性、函数地图像、二次函数地配方法、三角函数地有界性、均值定理、函数求导等等方法求函数f<x)地最值.这类问题在数学地学习涉及地知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现地试卷类型,希望同学们在日常学习中注意积累.(二>、赋值型——利用特殊值求解等式中地恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1>4+b 1(x+1>3+b 2(x+1>2+b 3(x+1>+b 4定义映射f:(a 1,a 2,a 3,a 4>→b 1+b 2+b 3+b 4,则f:(4,3,2,1>→(>A.10B.7C.-1D.0略解:取x=0,则a 4=1+b 1+b 2+b 3+b 4,又a 4=1,所以b 1+b 2+b 3+b 4=0,故选D例2.如果函数y=f(x>=sin2x+acos2x 地图象关于直线x=8π-对称,那么a=<).A .1B .-1C .2D .-2.略解:取x=0及x=4π-,则f(0>=f(4π->,即a=-1,故选B.此法体现了数学中从一般到特殊地转化思想.<三)分清基本类型,运用相关基本知识,把握基本地解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x>=ax+b(a≠0>,若y=f(x>在[m,n]内恒有f(x>>0,则根据函数地图象<直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x><0,则有)(0)(<<n f m f 例2.对于满足|a|≤2地所有实数a,求使不等式x 2+ax+1>2a+x 恒成立地x 地取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 地一次函数大于0恒成立地问题.解:原不等式转化为(x-1>a+x 2-2x+1>0在|a|≤2时恒成立,设f(a>=(x-1>a+x 2-2x+1,则f(a>在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.即x∈(-∞,-1>∪(3,+∞>此类题本质上是利用了一次函数在区间[m,n]上地图象是一线段,故只需保证该线段两端点均在x 轴上方<或下方)即可.2、二次函数型涉及到二次函数地问题是复习地重点,同学们要加强学习、归纳、总结,提炼出一些具体地方法,在今后地解题中自觉运用.<1)若二次函数y=ax 2+bx+c(a≠0>大于0恒成立,则有00<∆>且a <2)若是二次函数在指定区间上地恒成立问题,可以利用韦达定理以及根地分布知识求解.例3.若函数12)1()1()(22++-+-=a x a x a x f 地定义域为R,求实数a 地取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数地讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立,所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x>地定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 地取值范围.分析:()y f x =地函数图像都在X 轴及其上方,如右图所示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 地取值范围.分析:要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 地最小值0)(≥a g 即可.解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上地最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥73a ∴≤又4a> a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()(3024a a g a f a ==--+≥62a ∴-≤≤又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥7a ∴≥-又4a <- 74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 地取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号地左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0地问题.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:<运用根地分布)2—2⑴当-<-2,即a >4时,g (a )=f (-2)=7-3a ≥2∴a ≤2a ∉(4,+∞)∴a 不存53在.⑵当-2≤-≤22a,即-4≤a ≤4时,2g (a )=f (a 2)=--a +3≥24a ,2-22-2≤a ≤2-22-2∴-4≤a ≤2⑶当->2,即a <-4时,g (a )=f (2)=7+a ≥2,2a∴a ≥-5∴-5≤a <-4综上所述-5≤a ≤22-2.此题属于含参数二次函数,求最值时,轴变区间定地情形,对轴与区间地位置进行分类讨论;还有与其相反地,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法<如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上地最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量地范围已知,另一个变量地范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号地两边,则可将恒成立问题转化成函数地最值问题求解.运用不等式地相关知识不难推出如下结论:若对于x 取值范围内地任何一个数都有f(x>>g(a>恒成立,则g(a><f(x>min 。
高中函数题型及解题方法

高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据着相当大的比重,因此熟练掌握函数的相关知识和解题方法对于高中生来说至关重要。
下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1. 一次函数。
一次函数是高中阶段最基础的函数之一,其函数表达式为y=kx+b,其中k和b分别代表斜率和截距。
一次函数的图像是一条直线,因此在解题时需要掌握直线的性质和相关的解题技巧,如求斜率、求截距、求交点等。
2. 二次函数。
二次函数是高中阶段比较常见的函数之一,其函数表达式为y=ax^2+bx+c,其中a不等于0。
二次函数的图像是抛物线,因此在解题时需要掌握抛物线的性质和相关的解题技巧,如求顶点、求零点、求对称轴等。
3. 指数函数。
指数函数是以a(a大于0且不等于1)为底的幂函数,其函数表达式为y=a^x。
指数函数的图像是一条逐渐增长或逐渐减小的曲线,因此在解题时需要掌握指数函数的增减性、奇偶性和相关的解题技巧,如求定义域、值域、解不等式等。
4. 对数函数。
对数函数是指数函数的反函数,其函数表达式为y=loga(x)。
对数函数的图像是一条渐进于x轴的曲线,因此在解题时需要掌握对数函数的性质和相关的解题技巧,如求定义域、值域、解不等式等。
二、解题方法。
1. 分析题目。
在解函数题型的题目时,首先要仔细阅读题目,分析题目中所给的条件和要求,理清思路,确定解题的方法和步骤。
2. 列出方程。
根据题目所给的条件,可以列出相应的函数方程,如一次函数的斜率截距形式、二次函数的标准形式、指数函数的幂函数形式、对数函数的指数形式等。
3. 运用函数性质。
根据函数的性质和特点,运用相关的定理和公式,解决问题。
比如利用一次函数的斜率求交点坐标,利用二次函数的顶点求最值,利用指数函数的增减性解不等式,利用对数函数的性质求解方程等。
4. 综合运用。
有些函数题目可能需要综合运用多种函数的性质和解题方法,因此在解题时需要综合考虑,灵活运用各种方法,找到最优解。
高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a -1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a 土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。
a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2;x<a 时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m 的值(2)当x ∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。
高中数学题型归纳及方法

高中数学题型归纳及方法一、函数题型。
1. 求函数定义域题型。
题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。
解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。
对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。
综合起来,函数的定义域为x>1。
2. 函数单调性判断题型。
题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。
解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。
在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。
因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。
二、三角函数题型。
3. 三角函数化简求值题型。
题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。
解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。
当α=(π)/(3)时,sinα=(√(3))/(2)。
4. 三角函数图象平移题型。
题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。
解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。
再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。
三、数列题型。
5. 等差数列通项公式求题型。
题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。
高考反函数问题常见类型解析

高考反函数问题常见类型解析反函数是高中数学中的重要概念之一,也是学生学习的难点之一。
在历年高考中占有一定的比例。
为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。
一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( )A. (]a ∈-∞,1B. [)a ∈+∞2,C. (][)a ∈-∞+∞,,12D. []a ∈12,解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的子区间(]-∞,a 或[)a ,+∞上是单调函数。
而已知函数f x ()在区间[1,2]上存在反函数,所以[](]12,,⊆-∞a 或者[][)12,,⊆+∞a ,即a ≤1或a ≥2。
故选(C )点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。
特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。
二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113B. y x x =-+≥-()()113C. y x x =+≥()()103 D. y x x =-+≥()()103解析:由x ≤0可得x 230≥,故y ≥-1,从y x =-231解得x y =±+()13因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113故选(B )。
点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。
三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数问题常见习题类型及解法一、函数的概念函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.Ⅰ 深化对函数概念的认识例1.下列函数中,不存在反函数的是 ( )分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。
此题作为选择题还可采用估算的方法.对于D ,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D 中函数不存在反函数.于是决定本题选D .说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键. 由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞ C 、23[,1] D 、23(,1]例2.(天津市)函数123-=x y (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x y B 、)31(log 13≥+-=x x y C 、)131(log 13≤<+=x x y D 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断: ①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.Ⅱ 系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字例2.已知函数()f x 定义域为(0,2),求下列函数的定义域:分析:x 的函数f(x 2)是由u=x 2与f(u)这两个函数复合而成的复合函数,其中x 是自变量,u 是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u <2,即0<x 2<2.求x 的取值范围.解:(1)由0<x 2<2, 得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。
2.求函数值域的基本类型和常用方法函数的值域是由其对应法则和定义域共同决定的.其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域.3.求函数解析式举例例3.已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.分析: 4x2-9y2=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?所以因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.二、函数的性质、图象(一)函数的性质函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.这部分内容的重点是对函数单调性和奇偶性定义的深入理解.函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.1.对函数单调性和奇偶性定义的理解例4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是()A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零.2.复合函数的性质复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.复合函数的性质由构成它的函数性质所决定,具备如下规律:(1)单调性规律如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.(2)奇偶性规律若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.例5.若y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)分析:本题存在多种解法,但不管哪种方法,都必须保证:①使loga(2-ax)有意义,即a>0且a≠1,2-ax>0.②使loga(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=loga u,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(2-ax)定义域的子集.解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),即loga 2>loga(2-a).u 解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= loga 应为增函数,得a>1,排除A,C,再令故排除D,选B.说明:本题为1995年全国高考试题,综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.3.函数单调性与奇偶性的综合运用例6.甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶.分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.故所求函数及其定义域为但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要论函数的增减性来解决.由于v1v2>0,v2-v1>0,并且又S>0,所以即则当v=c时,y取最小值.说明:此题是1997年全国高考试题.由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.(二)函数的图象1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.1.作函数图象的一个基本方法例7.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.解:(1)当x≥2时,即x-2≥0时,当x<2时,即x-2<0时,这是分段函数,每段函数图象可根据二次函数图象作出(见图6)(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;当0<x<1时,lgx<0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图象.在变换函数解析式中运用了转化变换和分类讨论的思想.2.作函数图象的另一个基本方法——图象变换法.一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象,这就是函数的图象变换.在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.(1)平移变换函数y=f(x+a)(a≠0)的图象可以通过把函数y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;函数y=f(x)+b(b≠0)的图象可以通过把函数y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.(2)伸缩变换函数y=Af(x)(A>0,A≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A >1)或缩短(0<A<1)成原来的A倍,横坐标不变而得到.函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上而得到.(3)对称变换函数y=-f(x)的图象可以通过作函数y=f(x)的图象关于x轴对称的图形而得到.函数y=f(-x)的图象可以通过作函数y=f(x)的图象关于y轴对称的图形而得到.函数y=-f(-x)的图象可以通过作函数y=f(x)的图象关于原点对称的图形而得到.函数y=f-1(x)的图象可以通过作函数y=f(x)的图象关于直线y=x对称的图形而得到。