各类典型功放电路大比拼

合集下载

功放集成电路哪个好 功放集成电路排名

功放集成电路哪个好 功放集成电路排名

功放集成电路哪个好功放集成电路排名LM系列会比TDA系列的好,关于“功放集成电路哪个好功放集成电路排名”的详细说明。

1.功放集成电路哪个好、LM系列会比TDA系列的好20W功率的:LM1875,TDA2030,这两个价钱差不多,TDA2030很脆弱,LM1875保护电路多一点,音质也好一点68W功率:LM3886TF,这个就不用说,标称功率只有68W,10A的电流,实际使用的话,100W是没有问题的,绝对的比TDA7293,TDA7294好很多2.功放集成电路排名第一名:柏斯Pass Labs (美国品牌)在Hi-End音响界,美国Pass Labs柏斯的威名早已如雷贯耳,发烧群中无人不识。

虽然论价钱,比Pass Labs更贵的比比皆是;论外形,比Pass Labs更华丽、更惹眼的也不在少数;但如果论及线路设计的技术性、工作稳定性和音效全面性,Pass Labs有绝对的实力名列前几名。

第二名:金嗓子Accuphase(日本品牌)金嗓子Accuphase是日本著名Hi-End晶体管放大器品牌,其产品制作严谨精美绝伦。

Accuphase名字取自Accurate(正确的)和phase(相位),是春日二郎在1972年飞往美国芝加哥途中想出来的,后与公司名称统一。

由于输出音质极佳,被台港昵称称「金嗓子」。

制造量少质精高价位的产品,价格从数十万日圆到最高级品超过百万日圆不等。

长期品质保证,该公司保有全部零件、即使创业时产品也能维修,实际送修约九成是十年以上的制品。

自许「孤高的最高级音响製造者」不论公司风格或代理商方面等,特色就是稳定、变动不大。

第三名:麦景图McIntosh(美国品牌)美国「麦景图」McIntosh,经历六十多个年头的辉煌岁月,由Frank. H. McIntosh先生于1949年成立,植根美国纽约Binghamton。

凭著“坚持”与“创见”的理念,使「麦景图」拥有昨日的光荣与今日的成就。

没有别的厂家能像「麦景图」一样,既是真空管的鼻祖,又是电晶体与集成电路的先锋。

经典功放电路图之A类,B类,AB类,D类,G类,H类,T类功放电路图详解

经典功放电路图之A类,B类,AB类,D类,G类,H类,T类功放电路图详解

经典功放电路图之A类,B类,AB类,D类,G类,H类,T类功放电路图详解展开全文作为硬件工程师,特别是做纯粹模拟电路、应用于音频功放的工程师,对于A类,B类,AB类,D类,G类,H类,T类功放应该特别熟悉。

大多数工程师或许只知道其中的一部分、或者知道大概,为了让更多的工程师掌握更加详尽的音频功放知识,下文对以上说的音频功放做详细的说明。

功放,顾名思义,就是功率放大的缩写。

与电压或者电流放大来说,功放要求获得一定的、不失真的功率,一般在大信号状态下工作,因此,功放电路一般包含电压放大或者电流放大电路没有的特殊问题,具体表现在:①输出功率尽可能大;②通常在大信号状态下工作;③非线性失真突出;④提高效率是重要的关注点;⑤功率器件的安全问题。

而对于音频功放电路,也需要注意以上的问题。

根据放大电路的导电方式不同,音频功放电路按照模拟和数字两种类型进行分类,模拟音频功放通常有A类,B类,AB类, G类,H 类 TD功放,数字电路功放分为D类,T类。

下文对以上的功放电路做详细的介绍和分析。

01A类功放(又称甲类功放)02B类功放(又称乙类功放)B类功放是指正弦信号的正负两个半周分别由推挽输出级的两个晶体管轮流放大输出的一类放大器,每一晶体管的导电时间为信号的半个周期,通常会产生我们所说的交越失真。

通过模拟电路的调整可以将该失真尽量的减小甚至消失。

B类放大器的效率明显高于A类功放。

03AB类功放(又称甲乙类)04D类功放(又称丁类功放)D类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具体工作原理如下:D类功放采用异步调制的方式,在音频信号周期发生变化时,高频载波信号仍然保持不变,因此,在音频频率比较低的时候,PWM的载波个数仍然较高,因此对抑制高频载波和减少失真非常有利,而载波的变频带原理音频信号频率,因此也不存在与基波之间的相互干扰问题。

许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。

高品质电子管功放电路大全适合胆机发烧友

高品质电子管功放电路大全适合胆机发烧友
811单端图纸,输出功率14W
SunAudio 2A3单端改进版,增强全面性,平衡性,提高低频速度力度。
KB)
2008-2-10 02:16
2A3推挽图纸,输出功率12W,THD=%
807/FU7单端,输出功率8W
KB)
2008-9-25 17:49
KT66单端,输出功率8W
KB)
2008-9-25 17:49
6146/FU46单端,输出功率8W
KB)
2008-9-25 16:44
6V6/6P6P单端,输出功率4W
805单端图纸,输出功率大于25W
KB)
2008-2-18 19:38
前级2(12AX7+6DJ8)
KB)
2007-4-6 16:22
前级电源1
KB)
2007-4-6 16:22
当前离线
nostalgia
精华
19
阅读权限
150
在线时间
6902 小时
最后登录
2010-6-16
新增一张300B图纸
KB)新增一张300B图纸
2008-1-22 03:44
注:本图为单声道设计
6550单端图纸1(三极管接法),输出功率8W
KB)
2008-2-10 15:15
纯真之源已改版实做,第二版各种功率管电路如下:
6550/KT88单端,输出功率
KB)
2008-9-25 22:27
6L6/6P3P单端,输出端,输出功率8W
KB)
2008-9-25 15:38
高品质电子管功放电路大全适合胆机发烧友
本贴图纸都经过实做验证,转载请注明出处。
6L6G(6P3P)推挽1,输出功率25W,THD=%

500w大功率功放电路图(四款功放电路图详解)

500w大功率功放电路图(四款功放电路图详解)

500w⼤功率功放电路图(四款功放电路图详解)⼀.500w⼤功率功放电路图(⼤功率单极电源的输出电路)电路的功能本电路是功率放⼤器的输出电路,负载为8欧,有效输出为500W,输出电压为180VP-P,输出电流峰值可达10A以上,所以它也可⽤于⾼输出单极电源。

电源电压为正负95V即使低些也⽆须改变电路参数。

电路⼯作原理负载为8欧时,为了输出500W的功率,根据VCC=√8RLP,VCC应为179V,再将损耗电压考虑在内,可采⽤正负95V双极电源。

四个并联流⼊的总集电极电流IO(MAX),根据IO(MAX)=√2PO/RL公式计算,约为11.2A,应配备能供给这样电流的电源。

如果TT5~TT12各晶体管的直流电流放⼤率HFE2最低为50,则有224MA的基极电流流过,若TT3(TT4)的HFE1也为50,则TT1(TT2)的发射极电流约为4.5MA,电路很容易在这样的电流下⼯作。

象这种HFE作为乘法结果(HFE1*HFE2)的连接⽅式称为达林顿连接。

⼆.500w⼤功率功放电路图(功率放⼤器开关电源电路图)三.500w⼤功率功放电路图(三垦⼤功率⾳响对管2SA2l5l/2SC6Oll)三垦⼤功率⾳响对管2SA2l5l/2SC6Oll,并应⽤这两对⼤功率管,设计出了⼀款⾼性能500W ⼤功率功放电路,电路如下图所⽰,⼯作原理输⼊级由VT1-VT3组成带射极恒流源的差分放⼤器,由VD2-VD4的正向导通电压作基准电压提供给VT3,⽽VD2-VD4的供电⼜由VT4及外围元件组成的恒流源提供,提⾼了输⼊级的稳定性,并具有较⾼的共模抑制能⼒,对于电⽹电压的变化、电⽹⼲扰、电位漂移、温度漂移等都有较强的抑制作⽤,并能很好地消除“厄雷效应(晶体管VCE的变化引起结电容的变化),输⼊管静态电流取1.5mA以保证⾜够的动态。

调RP2可以改变输⼊级静态电流的⼤⼩。

电压放⼤级是由VT5与VT6组成共基极电路,这种电路多⽤于宽带放⼤器,其电流放⼤倍数略⼩于1,但电压增益并不⽐共发射极低,并具有极好的⾼频特性,调RP4可以改变电压放⼤级电流的⼤⼩,本级电流取为5mA⼀6mA,VT7、VT8是它的镜像负载。

经典的分立元件功放电路

经典的分立元件功放电路

经典的分立元件功放电路经典的分立元件功放电路是一种常用的音频放大电路,用于将低功率的音频信号放大为较高功率的音频信号,以驱动扬声器产生高质量的音频输出。

以下是关于分立元件功放电路的十个例子:1. 单级共射式功放电路:这是最简单的功放电路之一,由一个NPN 型晶体管和几个电阻组成。

它具有较高的电压增益和较低的输入阻抗,适用于低功率应用。

2. 双级共射式功放电路:这种电路在单级共射式功放电路的基础上增加了一个额外的共射级,以提高电压增益和输出功率。

它在音频放大领域广泛应用。

3. 压控放大器(VCA):VCA是一种特殊的功放电路,它具有可以通过控制电压来调节增益的特点。

它常用于音频处理和音量控制应用。

4. 互补对称功放电路:这种电路由NPN型和PNP型晶体管组成,可以提供高质量的音频放大效果。

它具有较低的失真和较高的稳定性。

5. A类功放电路:A类功放电路通过将音频信号直接放大,不进行任何切割或变换,以实现较高的音频质量。

它的效率相对较低。

6. AB类功放电路:AB类功放电路是A类功放电路和B类功放电路的结合,既具有较高的音频质量,又具有较高的效率。

它广泛应用于音频设备中。

7. D类功放电路:D类功放电路使用数字开关技术,通过将音频信号转换为脉冲宽度调制(PWM)信号,然后再进行放大,以实现高效率和低功耗。

8. 功率放大器:功率放大器是一种专用的功放电路,用于放大较高功率的音频信号,以驱动大功率扬声器。

它通常需要较大的散热器来散热。

9. 音频放大器:音频放大器是一种专用的功放电路,用于放大音频信号的幅度,以实现较大的音量和更好的音质。

它在音响系统中起着关键作用。

10. 无负反馈功放电路:无负反馈功放电路是一种特殊的功放电路,它不使用负反馈来稳定放大电路,而是通过优化电路设计和选用高质量的元件来实现高性能的音频放大效果。

以上是关于经典的分立元件功放电路的十个例子。

这些电路在音频放大领域发挥着重要作用,具有不同的特点和适用范围。

功率放大器电路图全集

功率放大器电路图全集

功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。

模拟电子技术几种功放电路的比较

模拟电子技术几种功放电路的比较
BTL功率放大电路(Balanced Transformerless )是两个极性相 反的OTL放大器或无变压器的OCL放大器推动的
1.OCL乙类互补对称电路
+VCC V1
+
+
ui
RL
uo
V2
VEE
2.甲乙类互补对称式功率放大器
+VCC V1
+
+
ui
RL
uo
V2
VEE
常见的OCL甲乙类功率放大电路
2]2 (VCC VCES )2 VCC2
2RL
2RL
任务4 功率放大电路的制作
3)直流电源供给的功率PV
IC1
IC2
1
2
0
I c max
sintd (t)
I c max
PV
2IC1VCC
2VCC Icmax
2V CC(VCC UCES )
RL
2VC2C
RL
4)效率
Pomax VCC UCES Uomax
几种功放电路简介
OTL 为Output TransformerLess 的缩写。 OTL电路为单端推 挽式无输出变压器功率放大电路
OCL,是英文Output Capacitorless TransformerLess的缩写, 意思是没有输出电容器。OCL功率放大电路一般采用正、负 对称的两组电源供电,电路内部直到负载扬声器全部采用直 接耦合,中间无输入、输出变压器(人们将不用输入和输出 变压器的功率放大电路称为单端推挽电路).
PV
VCC 1
2
0
I cm
sin
td
(t )
VCC I cm

几种常见的功放电路

几种常见的功放电路
4.OTL功放电路:OTL功放电路又称为无输出变压器的推挽功率电路。下图是OTL功率放大器的 典型电路。V1和V2管是一对导电类型不同,特性配对一致的功放管,从连接方式看,V1和V2 上下对称,两管都接成射极输出,两管工作在乙类状态。从导电特性看:V1管是NPN型,它 在信号的正半周导通;V2管是PNP型,它在信号负半周导通。两管工作性能对称互为补偿, 故称它为互补对称电路。 在静态时,UB= UGB,由于V1和V2对称连接,特性一致,每管压降为 UGB,这时电 容C上电压亦为 UGB。UB=UE,V1和V2管均因零偏而截止,这时仅有很小的穿透电流ICEO 通过。 动态时,ui接入输入端,在ui的正半周,V1管的基极电位高于 UGB,其发射结处于正偏, V1管导通;V2管的发射结处于反偏,V2管截止。输出电流ic1由电源正端→V1→C→RL回到 电源负端。同理输入信号为负半周时,V2导通、V1截止,输出电流ic2由电容C的正极 →V2→RL回到电容C的负极,这时C代替电源向V2供电,即C充当V2管导通时的电源,这要 求电容C上的电压 UGB基本上维持不变,C必须足够大。
电子整机维修
几种常见的功放电路
1.甲类功放电路:甲类功放电路又称为单管功率放大器。此类放大器末级功率管的工作点在其线 性部分的中点,不论信号电平如何变化,他从电源取出的电流总是恒定不变的,因此也是效率 比较低的。其实际效率不超过25%。甲类放大器的优点是无交越失真和开关失真,而且谐波分 量中次级谐波非常丰富,听感上具有低音厚实、中音柔顺温暖,高音清晰圆润、层次感丰富的 特点。缺点是耗电量大,效率低,容易发热和对散热性要求高。此外,由于长期工作在大电流 高温状态下,因此容易引起可靠性和寿命方面的问题,而且整机成本较高。此类放大器适用于 小功率高保真放大。 如图所示为单管甲类功率放大电路。T1是输入变压器,其主要作用是变换阻抗(使前级得 到一个合适的负载),传输交流信号;T2是输出变压器,也主要起阻抗变换作用(使负载RL 与功放管的输出电阻相匹配)、传输功率。RB1、RB2、RE构成功放管的带直流负反馈的分 压式偏置电路;CB和CE分别为基极和发射极的交流旁路电容,CB将RB1和RB2交流短路,避 免了输入信号在偏置电阻 1 R 0 2 c i t t C 1 c i 2 0 c i 2 1 0 V V E B B G t U 1/2 ~ i i u u 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类典型功放电路大比拼
笔者对音响的热爱已十几年,特别是自己动手,由当年的卡座到如今CD,转盘,解码器,前后级,音箱等,虽说不上精通,却也有一定的认识。

早年喜欢到处试听人家的进口器材,有时还傻愣愣地捧着自己的土作品去撼人家十几倍价位的进口器材,当然那时是无法与人家比拟,无数的失败,尝试,差距却日益接近,到了两年前,已经可以用进口器材十分一的土作品去撼倒对方。

当然,由于物理工艺,即外壳强度的处理,如今我所做的功放最高只能到七八千元一台的价钱去卖给人家。

从我所卖出的功放,只要价钱上了千五元以上,从来都不会让买主有意见的,至于千五元以下的,勉强相当于六七千的进口纯功放,性价比反而不及贵的功放。

这么多年来,经我制作卖出的功放已愈千部,电路也是五花八门,基本上的典型电路都做过了,所以在此谈谈各种电路的音质差别。

以下对比是在电源,外壳,元件,输出级,搭配的其它器材等各方面都一致的情况为依据的,所不同之处仅电路而已。

1双电源不对称两级差动电路(如PIONEER M22K)详细电路
2双电源对称,第一级典型差动,第二级共射放大(如PHILIP 的LHH1000)
3双电源对称,第一级共射共基差动,第二级共射共基(如金嗓子E-305V)
详细电路
4双电源对称,第一,二级共射共基差动,第三级共射共基(如金嗓子A-100)详细电路
电路1,这是很多进口八千元以下的低档机的常用电路,不少人认为这样是属于单端甲类电压放大模式,可杜绝交越失真。

在实际试听中,这种电路给人一种柔慢的感觉,低频较松,人声的感情比较丰富,相当突出,有一定的厚度但量感不足,高频有衰落的表现(实测闭环增益在10-60000Hz),有一种雾里看花的感觉,乐器的轮廓让人很难定得准。

总体而言,音色方面是较接近于胆机的表现。

这跟进口八千元以下的纯功放音色表现相近。

电路2,这种电路在进口器材中采用得相对较少,可能是它高不成低不就吧,通常是几千到万五元的档次。

在这样机中我采用了直流伺服,因而低频表现好于电路1,控制力比较合适,清晰度也有一定的改进,人声中的喉音,鼻音清晰可闻,量感也不错,中高频通透,只是乐器的轮廓还稍嫌不够,总体表现优于电路1。

电路3,与前两种电路差距拉大了,不少几万元的进口高中档机也使用这种电路模式。

尤其是中高频段的清晰度,可能是归功于采用了共射共基电路吧,音色表现出式,人声,乐器的质与量相当充足,再没有蒙胧的感觉,尤其是人声与小提琴,忧怨,轻快,稳重,演绎者的感情都能清楚地交代,高频比前两种电路顺了不少,没有一点衰落的感觉。

电路4,曾经有不定期一段时期,国内的发烧友十分推崇“简洁至上”的理论,当时笔者也属于人云亦云的时期,因而那时常用电路1与2,后来,随着经验增多,对电路进行一点点的缓慢
改进,演变出了电路3,再改了两年,才成功做出了电路4。

为何那时乃至今天还有人推崇“简洁至上”呢?原因可能有两方面:1元件性能不佳。

十年前不少发烧友都用C1815之类的普通管子,更甚者,笔者通过这几年在一些电器厂家出任设计,发现不少这类通用的三极二极管,都只是一些国内厂家买国外的芯片封装的,并且越做越假,频率特性不好,用这类管子当然不能保证了。

2。

技术水平低,很多人都不具备调试设备,往往只能靠一只万用表,对于电路的工作点设置与调整不熟悉,有轻微自激也不知道,因此简单的电路稳定性容易保证,音质反而好于复杂的电路。

当技术水平到了一定的层面,再去做复杂的电路,结果却不一样了,光说理论,什么复杂电路的线性容易做得更好等,或者不够说服力,但各位不妨翻开一些音响杂志,进口器材中低档与高档的照片对比,很容易发现,高档机的电路复杂多了,又或者一些文献中介绍的电路原理图,高档机也是相对复杂的。

说回正题,话说我于一年多前第一次做出了电路4时,简直是技惊四座,一呜惊人,在一个月的时间里,被要求复制了四部,对比之下,其音质有一种超凡的感觉。

乐器的表现甭得说,轮廓定位让人一览无遗,人声的表现显得质量十足,轻快的让人觉得活跃,忧郁的催人泪下,所有的弱音都不放过,与乐器之间毫不妥协,不会有厚此薄彼的感觉,对于喇叭的控制有增强的趋势,收放自如,余间不会被吞噬或加长。

对比现行流行的电流放大电路,分晰力有过而无不及,且不会有电流放大电路的那种稍薄的声音。

这个电路也是够复杂的,光说电压放大级,元件数目比上述三种电路是倍数的增加,光三极管已经有二十一只。

如果应用于前级或CD中替代运放,三极管多过二十四只,者每一只三极管都是信号放大,没有电源恒流的用途,但其表现也是不可以用运放或其它分立电路替代的。

总而言之,电路是合理地复杂,电源变换的环节合理地简洁,才能把效果推上巅峰,做得好不好最主要的还是制作者的技术水平,而技术水平是经过长时间的磨炼得来的。

相关文档
最新文档