高光谱遥感简介
高光谱遥感分解课件

端元提取的效果直接影响到后续的混合 像元分解和谱间关系分析的精度和可靠 性,因此是高光谱遥感分解中的关键步
骤。
混合像元分解方法
混合像元分解的方法包括基于物理模型的方法和基于 统计模型的方法等。这些方法通过建立地物光谱与像 元光谱之间的数学模型,利用优化算法对模型参数进 行求解,从而得到每个像元的纯组分和丰度信息。
高光谱遥感分解方法
端元提取方法
端元提取是高光谱遥感分解的基础,目 的是从高光谱数据中提取出纯净的地物 光谱,为后续的混合像元分解和谱间关
系分析提供基础。
端元提取的方法包括基于统计的方法、 基于空间的方法和基于变换的方法等。 这些方法通过不同的原理和算法,从高 光谱数据中提取出尽可能纯净的地物光
谱。
矿物与地质应用
总结词
高光谱遥感在矿物与地质应用中具有重要作用,可以用于矿产资源调查、地质构造分析 等。
详细描述
高光谱遥感能够通过分析地物的光谱特征差异,识别不同类型的矿物和地质构造。在矿 产资源调查中,高光谱遥感可以用于发现潜在的矿床和评估矿产资源的分布情况。同时 ,在地质构造分析中,高光谱遥感可以通过分析地物的光谱特征差异,揭示地质构造的
高光谱遥感分解课件
ቤተ መጻሕፍቲ ባይዱ
目录
CONTENTS
• 高光谱遥感概述 • 高光谱遥感技术原理 • 高光谱遥感分解方法 • 高光谱遥感应用实例 • 高光谱遥感技术展望
01
CHAPTER
高光谱遥感概述
高光谱遥感的定义
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测 的技术。它通过卫星或飞机搭载的高光谱成像仪获取地物辐 射的连续光谱信息,进而分析地物的成分、结构和动态变化 。
高光谱遥感技术的挑战与问题
高光谱遥感名词解释

高光谱遥感名词解释
1.高光谱遥感(Hyperspectral Remote Sensing):是遥感技术的一种,利用高光谱数据进行地物信息的提取。
高光谱遥感能够提供每个像元的数十至数百个波段的光谱数据,这些数据可以用来识别不同类型的地物,对地表的物理、化学和生物属性进行精确的定量分析。
2.光谱(Spectrum):是由不同波长的光组成的光线。
在高光谱遥感中,探测器可以测量出每个像元的光谱,也就是不同波长的光在该像元的反射率或辐射率的值。
3.反射率(Reflectance):是地物表面反射入射光的比率,是高光谱遥感中的一个重要参数。
不同地物的反射率在不同波段上表现出不同的特征,可以用来识别地物类型。
4.特征提取(Feature extraction):是高光谱遥感中的重要分析方法,通过数学和统计学方法对光谱数据进行处理,提取出地物的光谱特征,如反射率峰值、谷值和斜率等,用来识别地物类型和进行精确分类。
5.分类(Classification):是将地物根据其光谱特征划分为不同的类别的过程。
高光谱遥感中常用的分类方法包括基于像素的分类、基于物体的分类和基于混合像元的分类等。
6.多光谱遥感(Multispectral Remote Sensing):和高光谱遥感相似,但是只能提供少数几个波段的光谱信息。
多光谱遥感常用于地物类型的粗略分类,而高光谱遥感更加适用于地物的精细分类和属性分析。
高光谱遥感的概念

定量反演与模型模拟技术
定量反演
利用高光谱数据反演地物参数, 如叶绿素含量、地表温度等。
模型模拟
建立地物光谱模型,模拟地物光 谱特征,用于预测和模拟。
参数优化
对反演和模拟的参数进行优化, 提高结果的准确性和可靠性。
04
高光谱遥感的应用案例
农业应用案例
作物分类与识别
土壤质量评估
高光谱遥感能够通过分析不同作物反射 的光谱特征,实现对农作物的精细分类 和识别,有助于精准农业的实施。
图像融合
将多源遥感数据融合,提 高信息量和分辨率。
图像增强
通过对比度拉伸、色彩映 射等手段,改善图像的可 视化效果。
特征提取与分类技术
特征提取
从高光谱数据中提取地物 光谱特征,如光谱曲线、 谱带宽度等。
分类识别
利用提取的特征进行地物 分类,识别不同类型地物。
精度评估
对分类结果进行精度评估, 提高分类准确率。
高光谱遥感的概念
目
CONTENCT
录
• 引言 • 高光谱遥感的原理 • 高光谱遥感的关键技术 • 高光谱遥感的应用案例 • 高光谱遥感的未来发展
01
引言
什么是高光谱遥感
高光谱遥感是一种利用光谱信息对地球表面进行观测和监测的技 术。它通过卫星、飞机或其他遥感平台搭载的高光谱传感器,获 取地表反射、发射和散射的光谱数据,从而实现对地物的精细识 别和分类。
高光谱遥感的数据获取方式
采集方式
通过卫星或飞机搭载高光谱传 感器进行数据采集。
数据处理
对采集的高光谱数据进行预处 理、特征提取和分类识别等操 作。
应用领域
农业、环境监测、城市规划、 地质勘察等领域。
03
高光谱遥感

多光谱遥感:国际遥感界的共识是光谱分辨率在λ /10数量级范围 的称为多光谱(Multispectral),这样的遥感器在可见光和近红外 光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等。 高光谱遥感:光谱分辨率在λ /100的遥感信息称之为高光谱遥感 (HyPerspectral)。它是在电磁波谱的可见光,近红外,中红外和 热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。 其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥 感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感 兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重 信息。高光谱遥感使本来在宽波段遥感中不可探测的物质,在高光 谱遥感中能被探测。 超高光谱遥感:而随着遥感光谱分辨率的进一步提高,在达到 λ /1000时,遥感即进入超高光谱(ultraspeetral)阶段。
土壤属性高光谱反演
土壤盐分
在土壤反射光谱中的特征光谱,从而对土壤营养状况和
土壤侵蚀状况做进一步检测与评价。有图可知,总氮在 0.55-0.60μm之间和0.80-0.85μm之间有较明显的反射峰 ,在1.4μm周围有较显著的吸收谷。
土壤水分
当土壤的含水率增加时,土壤的反射率下降,在水的吸
Hyperion/EO-1
Hyperion 传感器搭载于 EO-1 卫星平台,EO-1(Earth
Observing-1)是美国NASA 面向 21 世纪为接替 LandSat-7 而 研制的新型地球观测卫星,于 2000 年 11月发射升空,其卫 星轨道参数与 LandSat-7 卫星的轨道参数接近,之所以设计 相同轨道,目的是为了使 EO-1 和 LandSat-7 两颗星的图像 每天至少有 1~4 景重叠,以便进行比对。 传统的陆地资源卫星只提供为数不多的七个多光谱波段,远 远不能满足各种实际应用的需要,因此美国地质调查局 (USGS)与美国宇航局(NASA)合作发射了 EO-1 卫星, 并在该卫星上搭载了三种传感器分别是 ALI (the Advanced Land Imager), Hyperion, LEISA (the Linear Etalon Imaging Spectrometer Array)Atmospheric Corrector
高光谱遥感

高光谱遥感器
OMIS系统部分参数 128波段 波段 波长 光谱分辩率 64(64,32,16) 0.4-1.1um 10nm 16(8,1) 1.1-2.0um 60nm 32(32,1) 2.0-2.5um 15nm 8(8,1) 3.0-5.0um 250nm 8(8,1) 8.0-12.5um 500nm IFOV 3.0,1.5mrad FOV > 70 degree
VNIR: 32 波段 (0.44~1.08um) 光谱分辨率: 20nm SWIR: 32 波段 (1.5~2.45um) 光谱分辨率: 25nm TIR: 7 波段 (8.0~11.6) 光谱分辨率: 0.45um IFOV: 3.0mrad FOV: 90 degree scanning : 10-20(line/second) digitizer: 12bit
高光谱遥感的基本概念
高光谱遥感起源于20世纪70年代初的多光谱遥 感,它将成像技术与光谱技术结合在一起,在对目标 的空间特征成像的同时,对每个空间像元经过色散 形成几十乃至几百个窄波段以进行连续的光谱覆 盖,这样形成的遥感数据可以用“图像立方体”来形 象的描述.同传统遥感技术相比,由于其所获取的图 像包含了丰富的空间,辐射和光谱三重信息。
2 5.0 表 1.1,国际上部分成像光谱仪一览表(陈述彭等,1997) 500-980 32 2 0.0-71.0
遥感器 PLI-PMI CASI SFSI AIS-1 AIS-2 AVIRIS (20km) ASAS 改进 ASAS GERIS
光谱范围 (nm) 403-805 430-870 1200-2400 900-2100 1200-2400 800-1600 1200-2400 400-2450 455-873 400-1060 400-100 1000-2000 2000-2500
高光谱遥感与微波遥感

高光谱遥感与微波遥感高光谱遥感高光谱遥感是高光谱分辨率遥感(Hyperspectral Remote Sensing)的简称。
它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术(Lillesand & Kiefer 2000)。
其成像光谱仪可以收集到上百个非常窄的光谱波段信息。
高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。
高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。
国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspeetral)阶段(陈述彭等,1998)。
微波遥感科技名词定义中文名称:微波遥感英文名称:microwave remote sensing定义1:遥感器工作波段选择在微波波段范围的遥感。
所属学科:测绘学(一级学科);摄影测量与遥感学(二级学科)定义2:运用波长为1~1 000mm的微波电磁波的遥感技术。
包括通过接收地面目标物辐射的微波能量,或接收遥感器本身发射出的电磁波束的回波信号,根据其特征来判别目标物的性质,特征和状态,包括被动遥感和主动遥感技术。
所属学科:地理学(一级学科);遥感应用(二级学科)定义3:利用波长1~1000mm电磁波本身和在大气中传输的物理特性的遥感技术统称,该波段称为微波。
微波遥感对云层、地表植被、松散沙层和冰雪具有一定的穿透能力,可以全天侯工作。
所属学科:资源科技(一级学科);资源信息学(二级学科)本内容由全国科学技术名词审定委员会审定公布微波遥感是传感器的工作波长在微波波谱区的遥感技术,是利用微波投射于物体表面,由其反射回的微波波长改变及频移确定其大小、形态以及移动速度的技术。
《高光谱遥感的发展》课件

高光谱遥感技术的发展趋势
提高数据获取能力
未来将进一步提高高光谱传感器的性 能,提高数据获取的精度和稳定性。
加强数据处理能力
未来将进一步发展人工智能、机器学 习等技术,提高数据处理的速度和精 度。
拓展应用领域
未来将进一步拓展高光谱遥感技术的 应用领域,如城市规划、资源调查、 灾害监测等。
加强技术交流与合作
从分割后的图像中提取地物的光谱特征,包括光谱曲线、谱带宽度 、谱带深度等。
地物分类与识别
利用提取的光谱特征,对地物进行分类和识别,常用的方法包括监 督分类、非监督分类和支持向量机等。
03
高光谱遥感技术发展现状
高光谱遥感传感器的发展
高光谱成像技术进步
随着技术的不断进步,高光谱成像传 感器在空间分辨率、光谱分辨率和辐 射分辨率等方面取得了显著提升,为 地物精细识别提供了有力支持。
新型传感器研发
科研人员正致力于开发新型的高光谱 传感器,如多角度高光谱传感器和热 红外高光谱传感器,以拓宽遥感的应 用领域。
高光谱数据处理技术的发展
数据处理算法优化
针对高光谱数据的处理,算法不断优 化以提高数据处理速度和准确性,例 如支持向量机、神经网络等机器学习 方法在高光谱分类和识别中的广泛应 用。
3
城市规划与管理
在城市规划与管理方面,高光谱遥感为城市发展 提供了丰富的空间和环境信息,有助于实现精细 化管理和可持续发展。
04
高光谱遥感技术面临的挑战与展 望
高光谱遥感技术面临的挑战
数据获取难度大
数据处理复杂度高
高光谱遥感技术需要获取大量的高光谱数 据,但受到传感器性能、天气条件等多种 因素的影响,数据获取难度较大。
资源调查与利用
高光谱遥感在深空探测的应用

Fig. 1 Cassini VIMS observations of the Moon on 19 August 1999.
18
Roger N. Clark Science 2009;326:562-564
Published by AAAS
Fig. 2 (A) Average VIMS spectra for the three regions indicated in Fig. 1C.
3
目录
水星 火星 月球 木卫二和土卫三
小行星
地球
4
水星
水星(英语:Mercury,拉丁语: Mercurius)是太阳系八大行星最内 侧也是最小的一颗行星,也是离太阳 最近的行星。符号为☿, 中国称为辰 星,有着八大行星中最大的轨道偏心 率。它每87.968个地球日绕行太阳一 周,而每公转2.01周同时也自转3圈。
R. E. Arvidson et al. Science 2005;307:1591-1594
Published by AAAS
12
Fig. 2. (A) THEMIS scaled daytime infrared image subframe showing major geomorphic units including etched terrain materials exposed on a plateau and in a valley.
Roger N. Clark Science 2009;326:562-564
Published by AAAS
21
IIM
22
Major elements and Mg# of the Moon: Results from Chang’E-1 Interference Imaging Spectrometer (IIM) data