(完整)初三数学复习提纲

合集下载

2024中考数学总复习提纲

2024中考数学总复习提纲

2024中考数学总复习提纲一、整数的理解和运算(150字)1.整数的概念理解:正整数、负整数、绝对值等;2.整数的加法、减法、乘法和除法运算;3.整数的混合运算。

二、有理数的应用(150字)1.有理数的概念和性质;2.有理数的大小比较;3.有理数的加法、减法、乘法和除法运算;4.有理数的混合运算。

三、代数式的基本性质(200字)1.代数式的概念和基本性质;2.代数式的乘法和除法运算;3.代数式的因式分解。

四、图形的认识(200字)1.图形的基本概念:直线、曲线、多边形等;2.图形的分类:几何图形、有向图形等;3.图形的性质:对称性、平行性、相似性、等腰性等;4.图形的常见应用。

五、平面图形的计量(200字)1.长度的计量:毫米级别的测量、厘米和分米级别的测量、米和千米级别的测量;2.面积的计量:平面图形的面积计算(矩形、正方形、三角形、梯形等);3.周长和面积的关系。

六、百分数的认识和应用(150字)1.百分数的概念和基本性质;2.百分数与小数、分数的相互转化;3.百分数的加减法、乘除法运算;4.百分数在实际生活中的应用。

七、一次函数的性质和简单应用(200字)1.一次函数的定义和基本性质;2.一次函数图像的特点:变化趋势、截距、斜率等;3.一次函数方程的求解;4.一次函数在实际问题中的应用。

八、表格的读取和应用(150字)1.读取表格的相关信息;2.用表格进行简单的数据统计和分析;3.用表格解决实际问题。

九、概率的初步计算(150字)1.概率的概念和基本性质;2.事件的概率;3.概率的加法和乘法规则;4.概率在实际问题中的应用。

总结:以上为2024中考数学总复习提纲,涵盖了中考数学的基础知识和常见题型,可根据提纲进行系统的复习和备考。

中考数学知识点复习提纲

中考数学知识点复习提纲

中考数学知识点复习提纲一、整数与有理数1. 整数的概念和性质2. 有理数的概念与分类3. 整数与有理数的加减乘除运算法则4. 整数与有理数的大小比较5. 整数与有理数的综合运用二、代数式与方程式1. 代数式的基本概念2. 代数式的运算法则及其应用3. 一元一次方程的解法与实际问题的应用4. 二元一次方程组的解法与实际问题的应用5. 代数式与方程式的综合运用三、几何基本概念1. 点、线、面的基本概念与性质2. 角的基本概念与性质3. 二维图形的基本概念与性质5. 几何基本概念的综合运用四、平面图形与空间图形1. 一些特殊角的性质与应用2. 三角形的性质与分类3. 三角形中的三边关系与角的关系4. 四边形的性质与分类5. 平面图形与空间图形的综合运用五、数列与函数1. 数列的概念与性质2. 等差数列与等比数列的性质与公式3. 函数的概念与性质4. 一次函数与二次函数的性质与应用5. 数列与函数的综合运用六、统计与概率1. 数据的收集与整理方式2. 统计图表的制作与分析4. 抽样调查与统计的应用5. 统计与概率的综合运用七、解题方法与策略1. 解题方法的基本原则与步骤2. 常用解题技巧与策略3. 实例分析与解题模型的建立4. 复杂问题的解决思路与方法5. 解题方法与策略的综合运用以上是中考数学知识点复习的提纲,通过对每个知识点的概念、性质和运用进行系统的复习与掌握,将有助于同学们在中考中取得优异的成绩。

希望同学们能够结合教材和各类题型进行有针对性的练习,熟练掌握每个知识点的考点和解题方法,做到知识点的全面复习和深入理解,以提升数学应用能力和解题思维水平。

祝同学们顺利通过中考,并取得优异的成绩!。

九年级上学期数学复习大纲

九年级上学期数学复习大纲

九年级上学期数学复习大纲
1. 整数
- 正负数及其运算
- 绝对值
- 数线图
- 各种问题的解答
2. 分数
- 分数的概念和表示
- 分数的比较与运算
- 分数的化简和约分
- 分数与小数的相互转化
3. 代数式和方程
- 代数式的概念和运算
- 一元一次方程
- 解方程的方法
- 方程的应用
4. 几何
- 几何基本概念
- 图形的性质和关系
- 三角形的性质
- 相似与全等
5. 数据统计与概率- 数据的收集和整理
- 图表的绘制和分析
- 概率的基本概念和计算- 随机事件的发生概率
6. 几何变换
- 平移
- 翻转
- 旋转
- 对称性
7. 实数
- 实数集的分类
- 实数的运算
- 实数的大小比较
- 实数的近似计算
8. 二次根式与方程- 二次根式的化简与性质- 二次方程
- 解二次方程的方法
- 二次方程的应用
9. 函数与图像
- 函数的概念和关系
- 一次函数和二次函数- 函数的图像和性质
- 函数的应用
10. 空间几何
- 点、线、面的关系
- 体积和表面积的计算- 空间图形的投影
- 空间几何的应用
这份大纲旨在帮助九年级学生对上学期所学的数学知识进行复习。

请按照大纲的顺序有条理地复习相关知识点,并进行练习和巩固。

祝你成功复习并取得好成绩!。

九年级数学知识点提纲

九年级数学知识点提纲

九年级数学知识点提纲一、有理数及其运算1. 有理数概念2. 有理数的加减乘除3. 有理数的大小比较4. 有理数的绝对值二、代数式与分式1. 代数式的基本概念2. 代数式的运算法则3. 分式的概念与运算法则4. 分式方程的解法三、二次根式与无理数1. 二次根式的定义与性质2. 二次根式的化简与计算3. 无理数的概念与性质4. 无理数的运算法则四、平面图形的性质与计算1. 平面图形的基本概念2. 三角形的性质与分类3. 四边形的性质与分类4. 平行四边形与梯形的性质与计算五、三角形的性质与分类1. 三角形角度的性质2. 三角形边长的关系3. 三角形的分类与判定4. 三角形的面积计算与相似性质六、数列与函数1. 数列的概念与表示2. 等差数列与等比数列3. 函数的概念与性质4. 一次函数与二次函数七、方程与不等式1. 一元一次方程与二元一次方程2. 一元二次方程的解法3. 线性不等式的解法与图形表示4. 绝对值方程与不等式八、统计与概率1. 数据的收集与整理2. 统计图表的表示与分析3. 概率的基本概念与计算4. 事件的排列与组合计算九、几何变换与相似1. 平移、旋转、翻转的概念与性质2. 相似三角形的判定与性质3. 相似三角形的计算与应用4. 黄金分割与相似十、立体图形的认识与计算1. 空间图形的基本概念与性质2. 球体、圆锥、圆台的性质与计算3. 容积的计算与应用4. 空间立体图形的投影与展开图以上是九年级数学知识点提纲,包含了九年级数学的主要知识点。

通过学习这些知识点,可以帮助学生全面掌握九年级数学的基础概念、方法与技巧,为进一步学习高中数学奠定坚实的基础。

掌握了这些知识点,学生可以更好地解决数学问题,提高数学思维能力,并为将来的学习与应用打下坚实的数学基础。

九年级数学复习提纲

九年级数学复习提纲

九年级数学复习提纲九年级数学第二学期教学(中考复习)计划一、指导思想:新的数学课程标准指出“数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。

所以数学复习要面向全体学生,要使各层次的学生对初中数学基础知识、基本技能和基本方法的掌握程度均有所提高,还要使尽可能多的学生形成良好的思维能力、较强的综合能力、创新意识和实践能力。

”二、教材分析:代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为六个单元:几何的基本概念、相交线和平行线、三角形、四边形、相似形、解直角三角形、圆等。

配套练习以《河南中招----数学》为主,共计38课时系统讲授上述12个单元知识。

三、教学措施:根据复习时间和具体内容,安排三轮进行总复习。

第一轮,以教材(河南中招)章节顺序做系统全面的复习;第二轮进行专题复习以提高综合知识能力,训练思维,探求中考命题的规律,把握命题方向;第三轮梳理冲刺,综合模拟强化提高。

三、具体安排:1、时间利用安排:3月14日-----4月02日第一轮复习,4月02日---5月31日第二轮复习,6月1日----6月17日第三轮模拟训练2、教授内容:第一轮复习:第1课时有理数知识点有理数的意义:数轴,相反数,倒数,绝对值,近似数与有效数字。

有理数的运算:加减乘除,乘方,有理数的大小比较,科学记数法第二课时实数知识点:平方根,算术平方根,立方根的概念,乘方的意义,整数指数幂的意义第三课时整式知识点.整式的加减:合并同类项,去、添括号.单项式乘以单项式;多项式乘以单项式;多项式乘以多项式??乘法公式因式分解的方法: 提公因式法;运用公式法第四课时分式知识点:分式有意义的条件,分式的基本性质,分式的通分和约分分式的混合运算第五课时二次根式知识点:二次根式,同类二次根式,最简二次根式,,第六课时一元一次方程(组)知识点:等式的基本性质,一元一次方程和二元一次方程组的解法利用一次方程(组)解决实际问题。

九年级数学知识点复习提纲

九年级数学知识点复习提纲

九年级数学知识点复习提纲数学这门学科在九年级是学生们需要重点复习的科目之一。

九年级的数学涉及到许多重要的知识点,掌握好这些知识点对于提高数学水平和取得好成绩至关重要。

在本文中,我将为大家总结九年级数学的主要知识点,帮助大家了解需要重点复习和掌握的内容。

代数是九年级数学的重点之一。

首先,需要掌握一元一次方程的解法和应用。

例如,如果给出一个方程2x + 3 = 7,我们可以用逆运算将它的解计算出来。

同时,要了解方程的解的性质,例如当方程有无穷多解时,或者无解时会出现什么情况。

在代数的基础之上,我们还需要学习一元一次不等式的解法和应用。

对于不等式3x - 5 > 7,我们需要找到解的范围,并且要注意在解的过程中是否需要改变不等号的方向。

因式分解也是九年级数学的重要内容。

在因式分解中,我们要掌握提公因式法、分组分解法以及差平方公式等常用方法。

例如,在因式分解中,我们可以将多项式15x^2 + 10x分解为5x(3x + 2)。

同时,了解因式分解的应用,例如可以通过因式分解来求解方程或者简化计算。

绝对值是九年级数学中的一个重要知识点。

绝对值是表示一个数值的正距离,它永远是非负的。

因此,在解绝对值不等式时,我们要根据绝对值的性质来得出解的范围。

例如,对于不等式|2x+ 3| < 5,我们可以通过分情况讨论来求解。

二次函数是九年级数学的一个重要内容。

在学习二次函数时,我们需要掌握二次函数的基本性质以及二次函数图像的特点。

例如,对于二次函数y = ax^2 + bx + c,我们可以通过抛物线的开口方向、顶点坐标以及对称轴等特征来确定二次函数的图像。

几何是九年级数学中另一个重要的知识点。

在几何中,我们需要学习平面几何和立体几何的相关内容。

平面几何的内容包括平行线、相交线、相似三角形等。

立体几何的内容包括平行四边形、三角形的面积计算、体积计算等。

同时,要了解几何定理和推理方法,例如垂直平分线定理、勾股定理等。

2021年新版初三数学复习提纲三篇

2021年新版初三数学复习提纲三篇

初三数学复习提纲三篇.我自信,我出色:我拼搏,我成功!初三数学复习提纲 1 不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法。

不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1. 一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集。

(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

九年级数学知识点复习提纲

九年级数学知识点复习提纲

九年级数学知识点复习提纲九年级数学知识点复习提纲在年少学习的日子里,大家对知识点应该都不陌生吧?知识点就是一些常考的内容,或者考试经常出题的地方。

掌握知识点是我们提高成绩的关键!下面是店铺帮大家整理的九年级数学知识点复习提纲,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.两点间的距离(三个距离:点-点;点-线;线-线)
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数=
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
1联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
二、计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
初中数学总复习提纲
第一章实数
★重点★ 实数的有关概念及性质,实数的运算
☆内容提要☆
一、重要概念
1.数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
3.样本标准差:
三、应用举例(略)
第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
三、应用举例(略)
四、数式综合运算(略)
第三章统计初步
★重点★
☆内容提要☆一、重Leabharlann 概念1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
把分母中的根号划去叫做分母有理化。
9.指数
⑴( —幂,乘方运算)
1a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
相关文档
最新文档