圆的知识点复习(1)

合集下载

初中数学圆的知识点总复习附解析(1)

初中数学圆的知识点总复习附解析(1)

初中数学圆的知识点总复习附解析(1)一、选择题1.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.3.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )A .34B .13C .12D .14【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.Q 圆的直径正好是大正方形边长,∴22,∴2, 222=,则小球停在小正方形内部(阴影)区域的概率为12. 故选:C .【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.4.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2 C .3 D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.5.如图,O e 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A .32π-B .332π-C .23π-D .33π-【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×3=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)π⨯=32π-.故选A .6.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则图中阴影部分的面积是( )A .224π--B .224π-+ C .142π+ D .142π- 【答案】B【解析】【分析】先根据正方形的边长,求得CB 1=OB 1=AC-AB 1=2-1,进而得到211(21)2OB C S =-V ,再根据S △AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积. 【详解】连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC =90°,∴A ,D ,C 1在一条直线上,∵四边形ABCD 是正方形,∴AC 2OCB 1=45°,∴CB 1=OB 1∵AB 1=1,∴CB 1=OB 1=AC ﹣AB 12﹣1,∴211111(21)22OB C S OB CB ∆=⋅⋅=, ∵1111111111222AB C S AB B C =⋅=⨯⨯=V , 2245(2)11(21)22224ππ⨯⨯--=-+ 故选B .【点睛】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.7.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.22C.3D.23【答案】B【解析】【分析】根据垂径定理得到CH=BH,»»=,根据圆周角定理求出∠AOB,根据正弦的定义求出AC BCBH,计算即可.【详解】如图BC与OA相交于H∵OA⊥BC,∴CH=BH,»»=,AC AB∴∠AOB=2∠CDA=60°,∴BH=OB⋅sin∠3,∴3故选D.【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.8.下列命题错误的是()A.平分弦的直径垂直于弦B.三角形一定有外接圆和内切圆C.等弧对等弦D.经过切点且垂直于切线的直线必经过圆心【答案】C【解析】【分析】根据垂径定理、三角形外接圆、圆的有关概念判断即可.【详解】A、平分弦的直径一定垂直于弦,是真命题;B、三角形一定有外接圆和内切圆,是真命题;C、在同圆或等圆中,等弧对等弦,是假命题;D、经过切点且垂直于切线的直线必经过圆心,是真命题;故选C.【点睛】本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.9.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4 B.83C.6 D.43【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=43,∴光盘的直径为83.故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数. 10.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A.2πB.3πC.6πD.8π【答案】B【解析】【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】解:圆锥的侧面积为:12×2π×1×3=3π,故选:B.【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.11.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15°B.30°C.60°D.75°【答案】D【解析】【分析】【详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=12∠AOD=75°.故选D.考点:切线的性质;圆周角定理.12.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.13.如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是( )A .22°B .26°C .32°D .68°【答案】A【解析】 试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC 可得:∠OBC=∠OCB=22°. 考点:圆周角的计算14.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )A .130°B .100°C .20°D .10°【答案】A【解析】【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.【详解】∵∠CBE=50°∴∠ABC=130°∵四边形ABCD 是内接四边形∴∠ADC=50°∵AD=DC∴在△ADC 中,∠C=∠DAC=65°∴∠AOD=2∠C=130°故选:A【点睛】本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).16.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.3B.4 C3D.2【答案】D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理. 17.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.19.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.20.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.。

圆的知识点总结..

圆的知识点总结..

第二十四章圆第三章圆1、定义:圆是平面上到定点距离等于定长的点的集合。

其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。

对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心〔即定点〕,二是半径〔即定长〕。

2、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,那么:①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r证明假设干个点共圆,就是证明这几个点与一个定点的距离相等。

3、圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆是中心对称图形,对称中心为圆心。

直径所在的直线是它的对称轴,圆有无数条对称轴。

4、与圆相关的概念:①弦和直径。

弦:连接圆上任意两点的线段叫做弦。

直径:经过圆心的弦叫做直径。

②圆弧、半圆、优弧、劣弧。

圆弧:圆上任意两点间的局部叫做圆弧,简称弧,用符号“⌒〞表示,半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。

优弧:大于半圆的弧叫做优弧。

劣弧:小于半圆的弧叫做劣弧。

(为了区别优弧和劣弧,优弧用三个字母表示。

)③弓形:弦及所对的弧组成的图形叫做弓形。

④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角。

⑦弦心距:从圆心到弦的距离叫做弦心距。

5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

6、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

圆的相关知识点总结

圆的相关知识点总结

圆的相关知识点总结1. 圆的定义圆是平面上到一个确定点(圆心)的距离恒定的所有点的集合。

这个距离称为圆的半径,用字母r表示。

圆的边界称为圆周,圆周上的任意一点到圆心的距离都等于半径r。

用数学符号来表示一个圆,可以用(x - h)² + (y - k)² = r²来描述,其中(h, k)是圆心的坐标。

2. 圆的性质(1)圆的直径:过圆心的任意一条线段,两端点恰好在圆上,这条线段称为圆的直径,其长度等于圆的半径的两倍。

(2)圆的弧:圆周上任意两点之间的部分称为圆的弧,如果这两点在圆上是相邻的,则这个弧称为圆周弧;如果这两点不相邻,则这个弧称为圆的割弧。

(3)圆心角:以圆心为顶点的两条射线所夹的角称为圆心角,其度数是弧所对的圆周角的度数的一半。

(4)正接线:与圆相切的直线称为正接线。

(5)切点:正接线与圆相切的点称为切点。

3. 相关公式(1)圆的周长:圆的周长等于直径乘以π(π≈3.14),即C=2πr。

(2)圆的面积:圆的面积等于半径的平方乘以π,即A=πr²。

4. 圆的相关定理(1)圆心角定理:圆周上的任意两个弧所对的两个圆心角相等。

(2)弧长定理:圆的弧长等于这个弧所对的圆心角的度数与圆的周长的比值。

(3)切线定理:切线与半径的夹角等于90度。

(4)切线与弦的定理:切线与相同弧上的弦相等。

(5)切割定理:两条相交的直线分别与圆相交,它们与圆的交点之间的线段成比例。

5. 圆的应用(1)圆的运动学:圆的运动学可以应用于自然界中很多运动规律的研究,比如行星绕太阳的运动、车轮滚动等。

(2)圆的几何解决问题:圆的性质和定理可以应用于解决很多实际的几何问题,如建筑设计、机械制造等。

(3)圆的应用于工程中:圆的性质和定理在工程中有着广泛应用,比如在建筑设计、电子制造、地理测量等方面。

总结:圆作为平面几何中的基本图形之一,在数学和实际生活中有着广泛的应用。

掌握圆的定义、性质、相关公式和定理等内容对于理解数学知识和解决实际问题至关重要。

(完整版)初三上学期圆知识点和典型基础例题复习

(完整版)初三上学期圆知识点和典型基础例题复习

第三章:圆一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合(平面上到定点的距离等于定长的所有点组成的图像叫做圆;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;圆的对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线 圆弧(简称:弧):圆上任意两点的部分弦:连接圆上任意两点的线段(经过圆心的弦叫做直径)如图所示,以A,B 为端点的弧记做AB ,读作:“圆弧AB ”或者“弧AB ”;线段AB 是⊙O 的一条弦,弦CD 是⊙O 的一条直径;【典型例题】例1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ).A .4个B .3个C . 2个D . 1个例2.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm . 二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系A考查形式:考查两圆的位置关系与数量关系(圆心距与两圆的半径)的对应,常以填空题或选择题的形式出现.题目常与图案、方程、坐标等进行综合外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;例、1、若两圆相切,且两圆的半径分别是2,3,则这两个圆的圆心距是( )A 。

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2 圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。

2.通过圆心并且两端都在圆上的线段叫做直径。

3.一个圆有无数条半径,无数条直径。

4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。

5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。

把圆沿任意一条直径对折,两边可以重合。

6.圆心确定了,圆的中心位置就确定了。

半径决定了圆的大小。

7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。

知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。

2.围成圆的曲线的长是圆的周长。

3.圆的周长=直径×圆周率。

4.C=πd 或C=2πr 。

知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。

2.圆的面积 S=πr ²。

知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。

知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。

2.外圆内方的图形称为圆内接正方形。

3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。

2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

圆初中数学知识点总结

圆初中数学知识点总结

圆初中数学知识点总结圆初中数学知识点总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此,让我们写一份总结吧。

那么总结有什么格式呢?以下是小编为大家整理的圆初中数学知识点总结,仅供参考,大家一起来看看吧。

圆初中数学知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA 叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和>180°与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

初三《圆》知识点及定理(1)

初三《圆》知识点及定理(1)

《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线.二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
B
第二十八章 圆
一.《圆》知识点
1.点的轨迹 2.三种位置关系 3.垂径定理 4.圆心角定理 5.圆周角定理 6.弦切角定理 7.圆的内接四边形定理 8.切线的性质与判定定理 9.切线长定理 10.相交弦定理 11.两圆公共弦定理 12.圆的公切线 13.圆内正多边形 14.弧长、扇形面积公式 15.侧面展开图
二.点的轨迹
集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:1、到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是线段的中垂线; 3、到角两边距离相等的点的轨迹是角的平分线;
4、到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线
三.三种位置关系:
1.点与圆 :点与圆的位置关系: 点在圆内 d<r 点C 在圆内
点在圆上 d=r 点B 在圆上
点在圆外 d>r 点A 在圆外
2.直线与圆:直线与圆的位置关系:直线与圆相离 d>r 无交点
直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 有两个交点
3. 圆与圆:圆与圆的位置关系: 外离(图1) 无交点 d>R+r
外切(图2) 有一个交点 d=R+r
相交(图3) 有两个交点 R-r<d<R+r 内切(图4) 有一个交点 d=R-r 内含(图5) 无交点 d<R-r
图4
图2
图1
2
D
四.垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
注:以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个
即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ ①② ③④⑤ 或 ①③ ②④⑤或…… 推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴
五.圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等
注:此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论
也即:①∠AOB=∠DOE ②AB=DE ③OC=OF ④ ① ②③④ 或 ② ①③④……
六.圆周角定理
圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半(图1)
即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧
即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D (图2)
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径
即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径(图3)
推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠
C=90°(图4)
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

图5
BC BD = AC AD
=
⇒⇒ AC BD = BA ED =⇒⇒ AB
D B
A (图1)(图2)(图3)(图4)七.弦切角定理
弦切角定理:弦切角等于所夹弧所对的圆周角
推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

即:∵MN是切线,AB是弦∴∠BAM=∠BCA
八.圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O中,∵四边形ABCD是内接四边形
∴∠C+∠BAD=180°;∠B+∠D=180°;∠DAE=∠C。

九.切线的性质与判定定理
(1)判定定理:过半径外端且垂直于半径的直线是切线
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线
(2)性质定理:切线垂直于过切点的半径(如图∵MN是切线∴MN⊥OA)
推论1:过圆心垂直于切线的直线必过切点。

推论2
以上三个定理及推论也称二推一定理:
即:①过圆心②过切点③垂直于切线三条中知道任意两个作条件都能推出最后一条。

十.切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA、PB是的两条切线∴PA=PB ;PO平分∠BPA。

十一.相交弦定理
圆内相交弦定理及其推论:
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等
即:在⊙O中,∵弦AB、CD相交于点P ∴PA·PB=PC·PA
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O中,∵直径AB⊥CD ∴
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项即:在⊙O中,∵PA是切线,PB是割线∴
(4
)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的
A
O
B A
22
CE DE EA EB
==
2
PA PC PB
=
3
l
2
S S S
=+

表底
2
22
rh r
ππ
+
C1
D1交点的两条线段长的积相等。

即:在⊙O中,∵PB、PE是割线∴
十二.两圆公共弦定理
圆公共弦定理:连心线垂直平分公共弦
即:∵⊙O1、⊙O2相交于A、B两点∴O1O2垂直平分AB
十三.圆的公切线
两圆公切线长的计算公式:
(1)公切线长:在Rt△O1O2C中,
(2)外公切线长:CO2是半径之差;
内公切线长:CO2是半径之和
十四.圆内正多边形的计算
1)正三角形
在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=
(2)正四边形
同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=
(3)正六边形
同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA=
十五.弧长、扇形面积公式
1)弧长公式:

2)扇形面积公式:
十六.侧面展开图
(1)圆柱侧面展开图=
(2)圆锥侧面展开图=
PC PB PD PE
=
22
1
AB CO
==
2
2
180
n R
l
π
=21
3602
n R
S lR
π
==
S S S
=+

表底
2
Rr r
ππ
+
4。

相关文档
最新文档