边界元与有限元

合集下载

电动力学中的电场分布模拟

电动力学中的电场分布模拟

电动力学中的电场分布模拟在电动力学中,电场是一个非常重要的概念,用来描述电荷之间的相互作用。

电场的分布对于理解电磁现象以及解决各种工程问题都具有重要的意义。

为了更好地研究和理解电场分布,科学家们发展了各种电场分布的模拟方法。

本文将介绍几种常见的电场分布模拟方法及其应用。

一、有限元法(Finite Element Method,FEM)有限元法是一种常见的数值计算方法,用于求解偏微分方程和变分问题。

在电场分布模拟中,有限元法可以通过将电场区域划分为有限数量的小元素,然后利用这些小元素的基本信息来近似求解电场分布。

有限元法可以应用于各种复杂的电场问题,并且具有较高的计算精度。

二、有限差分法(Finite Difference Method,FDM)有限差分法是一种基于差分运算的数值计算方法,用于求解偏微分方程。

在电场分布模拟中,有限差分法可以将电场区域划分为离散的网格点,然后利用网格点间的差分运算来逼近求解电场分布。

有限差分法适用于各种简单的电场问题,并且计算速度较快。

三、边界元法(Boundary Element Method,BEM)边界元法是一种基于边界积分方程的数值计算方法,用于求解偏微分方程的边界值问题。

在电场分布模拟中,边界元法可以通过将电场区域划分为有限数量的边界元素,然后利用边界元素上的边界条件来求解电场分布。

边界元法适用于具有无穷远边界条件或者具有局部边界条件的电场问题。

四、有限积分法(Finite Integration Technique,FIT)有限积分法是一种基于积分形式的数值计算方法,用于求解偏微分方程的边界值问题。

在电场分布模拟中,有限积分法可以通过在电场区域中离散采样然后应用积分近似来求解电场分布。

有限积分法可以应用于各种电场问题,并且具有适应性强、计算速度快的特点。

五、快速多极子方法(Fast Multipole Method,FMM)快速多极子方法是一种高效的数值计算方法,用于求解大规模的边界值问题。

基于有限元和边界元的轮胎振动声辐射仿真计算

基于有限元和边界元的轮胎振动声辐射仿真计算

功率级随频率的变化规律. 静载增大 , 轮胎刚度增 大, 导致其 固有频率增 大 , 对应峰值频 率往 右移. 进一步可以发现静载增大 , 对高频的影响也要大于 低频 , 主要影响胎侧的振动 , 使其辐射噪声增大 , 总 声 功 率级 由 16 8 d 3 .5 B增 大到 132 d . 4 .8 B

3 影响因素 分析
图 9给 出 了不 同充 气 压 力下 轮 胎 噪声 辐 射 声
功率级随频率的变化规律. 胎压减小 , 轮胎刚度减
小 , 致 其 固有 频 率 减 小 , 应 峰值 频 率往 左 移 . 导 对 进一 步可 以发 现 胎 压 减 小 , 高 频 的影 响 大 于 低 对 频, 主要影 响胎 侧 的振 动 , 其 辐射 噪声 增大 , 使 总声 功率 级 由 16 8d 3 .5 B增 大到 187 d . 3 .3 B 图1 0给 出 了不 同垂 向静 载 下轮胎 噪声 辐射 声
p r .A ts to sd s n da d u e ots ec n u tdee t ma n t tr rn eo eAC moo at s et meh dwa ei e n sd t et h o d ce lcr g t o g ei i ef e c f tri c n e 声辐射 仿 真 计算 等 基
49 8
度增 大 , 导致 其 固有 频 率 增 大 , 应 峰 值 频 率 往 右 对
移 .进 一 步 可 以发 现 , 侧 材 料 变 硬 , 声 辐 射影 胎 对
振 动声 辐射 ; 压和 静载 对振 动声 辐射 中的中高频 胎
率时轮胎表面各节点的振动分布情况. 可以发现 , 在轮胎接地位置受到径向激励时 , 轮胎胎面首先振动.随着频率升高 , 胎面的振动开 始传递到胎侧.图 7 为某轿车轮胎在 02 P 胎压 .M a 下振动试验结果 , J激振源位于轮胎接地中心.可

06有限体积法、有限元法、边界元法.ppt [修复的]

06有限体积法、有限元法、边界元法.ppt [修复的]


t t

t
0 TP dt fTP 1 f TP dt


f 0,1 权系数

a PTP a E fTE 1 f

0 aP
1 f a E

a fT 1 f a T
0 TE W W 0 P
W
1 f
q wds
j j 1 j
n
引入记号
w n ds j H ij w ds c i n j

j i j i
Gij
j
wds

H u G q
ij j ij j 1 j 1
n
n
j
或写成矩阵形式
a.常数单元(1节点)
取单元中点为节点,则
u const q const
b.线性单元(2节点) 取单元两端点为节点,则
j 1 1 j1
2 j 1 1 j2 2 u j u1j1 u 2j 2
q j q1j1 q 2j 2

Ke Kw aE , aW x E x w a P a E aW , b S x

a PTP a E TE aW TW b d

aPTP
a
nbT
b d
足标nb表示相邻节点.
d 或d 标准形式
将分成j 1,2,..., n个直线段称为单元。 u 设待求函数u及导数q 的逼近函数为 n
u q x y
j j
ji ui
j j j

高压电子学中的场强计算方法研究

高压电子学中的场强计算方法研究

高压电子学中的场强计算方法研究在高压电子学中,电场强度是一个非常重要的物理量。

电场强度是指单位电荷所受的电力作用力,通常用V/m表示。

在高压电子学中,电场强度常常可以达到数百千伏/m或以上,因此如何准确地计算电场强度是一个非常重要的问题。

在计算电场强度时,需要考虑电荷分布和空间几何形状等因素。

为了准确计算电场强度,必须建立合理的数学模型,并采用适当的计算方法。

本文将介绍几种常用的计算方法,并探讨它们的优缺点。

1. 有限元法有限元法是一种基于数值计算的方法,常用于求解物理问题中的场问题。

在计算电场强度时,可以将空间划分为有限的小区域,并在每个小区域内建立适当的数学模型。

通过求解每个小区域内的电场分布,最终可以得到整个空间的电场强度分布。

有限元法的优点在于可以处理比较复杂的几何形状,并且可以非常精确地计算电场强度分布。

不过,有限元法的缺点在于计算量较大,需要较高的计算能力和时间。

2. 边界元法边界元法是一种利用解析解求解物理问题中的边界问题的数学方法。

在计算电场强度时,可以将空间分为两个区域:内部区域和外部区域。

内部区域的电场强度由电荷分布和自由电流决定,而外部区域的电场强度由内部区域的电场强度所导致。

边界元法的优点在于计算量较小,通常可以得到比较精确的结果。

不过,边界元法的应用范围较窄,只适用于几何形状比较简单的情况。

3. 高斯定律高斯定律是一种基于电场分布和电荷分布之间关系的物理定理。

根据高斯定律,电场强度与电荷分布之间存在一种数量关系,即电通量密度与电荷密度之间成正比。

因此,在计算电场强度分布时,可以利用高斯定律得到电荷分布与电场强度分布之间的关系。

高斯定律的优点在于简单易懂,适用于各种不同的场问题。

不过,高斯定律的局限在于仅适用于对称分布的情况。

4. 有限差分法有限差分法是一种利用差分近似和数值方法求解物理问题的方法。

在计算电场强度时,可以将空间离散化为一个由离散点组成的网格,并在每个离散点处利用适当的差分公式进行计算。

基于有限元和边界元的噪声分析

基于有限元和边界元的噪声分析

/vibbbs/dispbbs.asp?boardID=75&ID=5444&page=1
2005-12-18
2005-12-18
振动论坛-声学基础理论-[转帖]基于有限元和边界元的噪声分析
页码,12/20
发动机边界元模型 如图所示是发动机外声场的在某频率上的声压响应云纹图。
/vibbbs/dispbbs.asp?boardID=75&ID=5444&page=1
nmlkj
nmlkj
n m l k j
nmlkj
nmlkj
n m l k j
nmlkj
nmlkj
n m l k j
nmlkj
nmlkj
振动论坛会员所在区域调查
段落格式 回复标题:
字体
字号
3 3 1/1页 1 1
GO
g f e d c b 显示签名
OK!发表回复
预览
分页:1/7,共49个 1 清空内容! 内容限制: 16240
2005-12-18

振动论坛-声学基础理论-[转帖]基于有限元和边界元的噪声分析
页码,13/20
发动机外声场声压响应云纹图 图所示是发动机外声场分别在 X 方向 Y 方向和 Z 方向上的声强云纹图。图所示法线方向上的云纹图。
/vibbbs/dispbbs.asp?boardID=75&ID=5444&page=1
排气系统的声学模型
/vibbbs/dispbbs.asp?boardID=75&ID=5444&page=1
2005-12-18
振动论坛-声学基础理论-[转帖]基于有限元和边界元的噪声分析

尾矿库渗流稳定分析中常用的数值模拟技术

尾矿库渗流稳定分析中常用的数值模拟技术

尾矿库渗流稳定分析中常用的数值模拟技术尾矿库是矿山开采过程中产生的一种固体废弃物储存设施,渗流稳定性分析是确保尾矿库安全运营的重要环节之一。

为了准确评估尾矿库的渗流稳定性,常常使用数值模拟技术来模拟和分析尾矿库的水流和土体应力情况。

本文将介绍尾矿库渗流稳定分析中常用的数值模拟技术。

1. 有限元方法(Finite Element Method,FEM)有限元方法是一种广泛应用于工程领域的数值模拟技术。

在尾矿库渗流稳定性分析中,可以使用有限元方法对尾矿库的地下水流动进行模拟。

首先,将尾矿库的区域划分为多个小单元,然后建立相应的数学模型,考虑边界条件和水流影响因素。

通过求解数学模型,可以得到尾矿库各个单元的水力头和水流速度,并进一步评估渗流稳定性。

2. 边界元方法(Boundary Element Method,BEM)边界元方法是一种基于边界的数值模拟技术,相比于有限元方法,边界元方法更加适用于尾矿库边界影响较大的情况。

在尾矿库渗流稳定性分析中,可以使用边界元方法来模拟尾矿库周围的水流。

通过将尾矿库的边界划分为多个小区域,建立相应的边界元模型,可以获得尾矿库边界上的水压力值和渗流通量。

通过分析这些参数,可以评估尾矿库的渗流稳定性。

3. 计算流体动力学方法(Computational Fluid Dynamics,CFD)计算流体动力学方法是一种数值模拟技术,主要用于分析和解决流体流动问题。

在尾矿库渗流稳定性分析中,可以使用计算流体动力学方法来模拟尾矿库内部的水流情况。

通过建立尾矿库的三维模型,考虑流动的层流或湍流特性,可以得到尾矿库内部的流速和压力分布。

进而,可以进一步评估尾矿库渗流稳定性。

4. 耦合模型方法尾矿库渗流稳定性分析涉及多个物理场的相互作用,常常需要采用耦合模型方法。

耦合模型方法将尾矿库渗流和围岩变形等问题相互联系,综合考虑多个物理过程。

例如,可以将有限元方法和边界元方法耦合使用,同时模拟尾矿库的水流和土体应力变形。

无界问题自然边界元与有限元的迭代耦合

无界问题自然边界元与有限元的迭代耦合
m o e,t e e to fr l x to a t a r a mp c n c v r nc p e n t e ie a i e p oc s , r he s l c i n o e a a i n f c orh s a g e ti a to on e ge e s e d i h t r tv r e s A n h t r tve c ve ge e s e s t a t s e he r l x ton f c o s 0 2. d t e ie a i on r nc pe d i he f s e twh n t e a a i a t r i .

要: 根据 区域 分解算 法 的 思想 , 究 了 自然边界 元 与有 限元 耦 合法 的 D— 迭 代 原理 , 编 研 N 并
写 了耦 合法计 算 程序 , 求解 了带方 孔 的无界平 面弹 性 问题 。算  ̄ t 算结 果 表 明 : ,t l 当计算 半 径 R 取 为孔 洞尺 寸的 1 2倍 , . 耦合 法 网格划 分时 取 1 4个 节点即 可较好 的 逼近 收敛 值 , 4 而相 同收 敛
Ab t a t s r c :Bas d on t e a go ih ofdo an de o e h l rt m m i c mpo ii n,D— ie a ie p i i e ofn t a ou a y sto N t r tv rncpl a ur lb nd r e e e t a d fnie e e n ou i g me ho s s u i d.And t n a pr r m o he c up i e ho lm n n i t l me t c pln t d wa t d e he og a f r t o lng m t d wa o d t o v n i fn t l ne ea tc pr blm t q r l nsd . The c lul ton r s t f s c de O s l e a n i ie p a l s i o e wih a s ua e ho e i i e ac a i e uls o a c c e e e a p e s ow ha h ou i g me h d wih 4 de a on r n e t x c ol to on r t x m l h t t t e c pln t o t 1 4 no s c n c ve ge c o e a t s u i ns

有限元 边界元

有限元 边界元

简介Finite Element
有限单元法是随着电子计算机的发展而迅速发 展起来的一种现代计算方法。它是50年代首先在 连续体力学领域--飞机结构静、动态特性分析中 应用的一种有效的数值分析方法,随后很快广泛 的应用于求解热传导、电磁场、流体力学等连续 性问题。 有限元法分析计算的思路和做法可 归纳如下:
有限元法与边界元法的比较
有限元法的概念
有限元法(FEA,Finite Element Analysis) 的基本概念是用较简单的问题代替复杂问题后再 求解。它将求解域看成是由许多称为有限元的小 的互连子域组成,对每一单元假定一个合适的(较 简单的)近似解,然后推导求解这个域总的满足 条件(如结构的平衡条件),从而得到问题的解。 这个解不是准确解,而是近似解,因为实际问题 被较简单的问题所代替。由于大多数实际问题难 以得到准确解,而有限元不仅计算精度高,而且 能适应各种复杂形状,因而成为行之有效的工程 分析手段。
有限元法与边界元法的应用
1、边界元方法使问题的维数降低一维,例如:三维问题变为二维问题,二维变 成一维问题。使得解题的自由度下降。 2、边界元相对于有限元来说,在相同离散精度的条件下,边界元解的精度要高 于有限元 3、边界元方法在有些情况下,可以较容易地处理有限元方法很难处理的问题, 例如,无限域问题,断裂问题等。 4、在问题的规模(自由度)不大的情况下,边界元的解题速度高于有限元方法。 但是,由于边界元方法形成的线性方程组的系数矩阵是满阵,所以在处理大 规模问题时遇到了困难,解题的规模受到限制。适合于处理中小规模问题。 5、边界元适合于处理位势问题、弹性问题,而在处理弹塑性问题或大的有限变 形问题时,由于需要对物体进行体积离散,此时,边界元降维的优点消失。 所以会在处理这一类问题时遇到一些困难。 6、边界元相对于有限元来说,其软件的商业化程度远不如有限元。所以,其处 理问题时,一般是针对某一问题专门编制程序进行计算。其前、后处理的工 作量较大。 7、边界元方法解题需要求出问题的基本解,基本解的推导一般比较复杂。通过 许多学者的努力对于一些问题,基本解已经被推导出来,但是,对于某些问 题,问题的基本解很难求出。 二者的耦合起来解决问题还是有人做的,尤其 是模拟半无限空间体时一般用有限元对分析域内部进行求解,而在边界上采 用边界元,这在二维、三维波动问题数值模拟中还是较为常用的,利用有限 元适合于解决大规模问题和边界元适合于解决无限域问题和解的精度高的特 点,来更好地解决实际问题!对于有些问题,用两者耦合的方法是比较好的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边界元与有限元边界元法boundary element method定义:将力学中的微分方程的定解问题化为边界积分方程的定解问题,再通过边界的离散化与待定函数的分片插值求解的数值方法。

所属学科:水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科)边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。

所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点.但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。

简介边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。

又称边界积分方程-边界元法。

它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。

它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。

又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。

特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。

由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。

边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。

对一般的非线性问题,由于在方程中会出现域内积分项,从而部分抵消了边界元法只要离散边界的优点。

边界元法的基础边界元法是基于控制微分方程的基本解来建立相应的边界积分方程,再结合边界的剖分而得到的离散算式。

Jaswon和Symm于1963年用间接边界元法求解了位势问题;Rizzo[3]于1967年用直接边界元法求解了二维线弹性问题;Cruse[4]于1969年将此法推广到三维弹性力学问题。

1978年,Brebbia用加权余量法推导出了边界积分方程,他指出加权余量法是最普遍的数值方法,如果以Kelvin解作为加权函数,从加权余量法中导出的将是边界积分方程——边界元法,从而初步形成了边界元法的理论体系,标志着边界元法进入系统性研究时期。

边界元法的发展经过近40年的研究和发展,边界元法已经成为一种精确高效的工程数值分析方法。

在数学方面,不仅在一定程度上克服了由于积分奇异性造成的困难,同时又对收敛性、误差分析以及各种不同的边界元法形式进行了统一的数学分析,为边界元法的可行性和可靠性提供了理论基础。

在方法与应用方面,现在,边界元法已应用到工程和科学的很多领域,对线性问题,边界元法的应用已经规范化;对非线性问题,其方法亦趋于成熟。

在软件应用方面,边界元法应用软件已由原来的解决单一问题的计算程序向具有前后处理功能、可以解决多种问题的边界元法程序包发展。

我国约在1978年开始进行边界元法的研究,目前,我国的学者在求解各种问题的边界元法的研究方面做了很多的工作,并且发展了相应的计算软件,有些已经应用于工程实际问题,并收到了良好的效果。

有限单元法有限单元法,是一种有效解决数学问题的解题方法。

其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

简介在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N 个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

其基本思路和解题步骤(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。

对于自然边界条件,一般在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

有限元有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

简介Finite Element有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。

它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。

有限元法分析计算的思路和做法可归纳如下:1)物体离散化将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。

离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。

所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。

这样,用有限元分析计算所获得的结果只是近似的。

如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。

2)单元特性分析A、选择位移模式在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。

位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。

当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。

这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。

通常,有限元法我们就将位移表示为坐标变量的简单函数。

这种函数称为位移模式或位移函数。

B、分析单元的力学性质根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。

此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。

C、计算等效节点力物体离散化后,假定力是通过节点从一个单元传递到另一个单元。

但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。

因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。

3)单元组集利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程(1-1)式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。

相关文档
最新文档