接触网系统工作原理及组成
接触网名词解释

接触网名词解释
接触网是供电系统中的一种设备,用于向电力机车或电动列车提供电力。
它由一组金属导线组成,安装在铁路上方的支架上。
接触网的主要功能是通过与电力机车上的受电弓接触,将电能传输到机车上,以供机车的牵引和辅助系统使用。
接触网的工作原理很简单。
当电力机车行驶在铁路上时,受电弓与接触网之间会建立电气连接。
电力通过接触网的导线传输到受电弓,然后进入电力机车的牵引系统,用于驱动机车的电动发动机。
另外,接触网还会提供电力给机车的辅助系统,如照明、空调、制动等。
为了确保电力的传输效率和安全性,接触网需要具备一些特点。
首先,接触网的导线必须具有足够的导电能力,以便承载电力机车的牵引需求。
其次,接触网需要保持与受电弓之间的良好接触,以减少电阻和能量损耗。
此外,接触网还需要具备一定的弹性,以适应电力机车在铁路上的运动和振动。
在设计和建设接触网时,需要考虑多种因素。
例如,铁路的供电方式、电力机车的功率需求、线路的形状和坡度等。
此外,接触网还需要进行定期的检修和维护,以确保其正常运行和安全性。
总结来说,接触网是一种供电系统设备,用于向电力机车或电动列车提供电力。
它通过与电力机车上的受电弓接触,将电能传输到机车上,以供机车的牵引和辅助系统使用。
接触网系统全解课件

应,满足车辆运行需求。
增强安全性
接触网系统的稳定运行可以减 少因电气接触不良引起的故障 ,保障行车安全。
提高传输效率
通过优化接触网系统设计和材 料选择,可以降低电能传输过 程中的损耗,提高电力传输效 率。
适应性强
接触网系统可以根据不同场合 和需求进行个性化设计,适应
国际化发展
随着全球轨道交通市场的不断扩大,接触网系统的国际化 发展将成为必然趋势,适应不同国家和地区的标准和需求 ,拓展海外市场。
THANKS
感谢观看
包括清扫、紧固、润滑等 作业,保持设备正常的运 行状态。
定期维护
按照规定的周期对设备进 行检查、调整、更换等作 业,预防设备故障。
特殊维护
在极端天气、自然灾害等 情况下,对设备进行加强 维护,确保设备安全稳定 运行。
接触网系统检修技术
视觉检查
通过肉眼观察设备表面状况,检 查是否存在裂纹、变形、锈蚀等
未来接触网系统的发展趋势与应用前景
绿色环保
随着环保意识的提高,未来接触网系统将更加注重绿色环 保,采用环保材料和低碳技术,降低能耗和环境污染。
超高速、大运量
适应高速铁路和城市轨道交通的发展需求,接触网系统将 不断提升运行速度和运输能力,实现超高速、大运量的运 营。
自动化、智能化
借助先进的人工智能、物联网等技术,接触网系统将实现 更高程度的自动化和智能化,提高运行安全和运营效率。
接触网系统全解课件
contents
目录
• 接触网系统概述 • 接触网系统主要设备 • 接触网系统维护与检修 • 接触网系统新技术与发展趋势
01
接触网系统概述
接触网原理

接触网原理
接触网是电气化铁路供电系统的一部分,是铁路电气化牵引系统中的重要组成
部分。
它通过接触网与列车上的受电弓之间的接触,将电能传输到列车上,从而实现列车的牵引和供电。
接触网原理主要包括接触网的构成、工作原理和相关设备等内容。
首先,接触网由接触线、支柱、横梁、绝缘子等部分组成。
接触线是接触网中
的主要部分,它负责传输电能,支柱和横梁则起到支撑和固定接触线的作用,而绝缘子则用于隔离接触线与支柱、横梁之间的电气连接。
其次,接触网的工作原理是利用列车上的受电弓与接触网之间的接触来实现电
能的传输。
当列车行驶时,受电弓与接触网之间形成一定的接触压力,从而使接触线上的电能传输到列车上,为列车提供牵引和供电。
在列车行驶过程中,接触网会根据列车的运行速度和位置进行自动调节,以保证列车始终能够获取到足够的电能。
除了以上的基本原理外,接触网还涉及到一些相关设备,如接触网检测系统、
接触网维护设备等。
接触网检测系统用于监测接触网的工作状态,及时发现和排除故障,确保接触网的正常运行。
而接触网维护设备则用于对接触网进行定期的检修和维护,保证接触网的安全和可靠性。
总的来说,接触网作为电气化铁路供电系统的重要组成部分,其原理和工作机
制对于铁路运输的安全和高效至关重要。
只有深入理解接触网的构成和工作原理,才能更好地保障铁路运输的正常运行,为乘客提供更加便利和舒适的出行体验。
因此,加强对接触网原理的学习和研究,对于提高铁路运输的安全性和效率性具有重要的意义。
电气化铁道接触网系统概述 接触网的基本组成

未补偿简单悬挂:结构简单,要求支柱高度较低,因此建设投资低,
施工和检修方便。其缺点是导线的张力和弛度随气温的变化较大,接触 线在悬挂点受力集中,形成硬点,弹性不均匀,不利于电力机车高速运 行时取流。
硬锚
带补偿装置及弹性吊索式简单悬挂:在接触线下锚处装设了张力 补偿装置,以调节张力和弛度的变化。在悬挂处加装 8~16m长 的弹性吊索,通过弹性吊索悬挂接触线,增加了悬挂点减小了悬 挂点处产生的硬点,改弦 上端产生上 下位移,吊 弦下端随接 触线发生顺 线路方向偏 斜
(3)
三、地铁接触网
1、架空接触网:刚性和柔性两种 2、地面第三轨
刚性接触网通过铝合金汇流排固定接触线
第三轨供电
四、接触网初步认知(接触网实训场)
1、一共有几个锚段?锚段的基本布置? 2、哪些支柱是硬锚,哪些支柱是补偿下锚? 3、悬挂类型是什么? 4、支柱的类型有哪些?
未补偿下锚(将线索端头通过绝缘子同支柱直接固定连接, 称为硬锚)。
未补偿简单悬挂、
带补偿及弹性吊索 的简单悬挂
按照悬挂链数分 单链:简单链形、 弹性链形 双链 多链
按照线索锚定方 式分 未补偿链形悬挂 半补偿链形悬挂 全补偿链形悬挂
按照承力索和接 触线相对位置分 直链形 半斜链形 斜链形
1 简单悬挂
接触网的基本组成
1、接触悬挂
弹性、坡度的概念?
2、支持装置
3、定位装置
4、支柱与基础
常见基础类型有:
二 接触悬挂的类型
锚段: 在一条接触网上为了满足供电和机械方面的要求,将接触网 分成若干一定长度且相互独立的分段。 下锚: 接触线端头同支柱的连接称为线索的下锚,分为
接触网组成与各部参数

接触网组成与各部参数接触网是用于供电铁路电力机车的设备,由接触网梁、支架、固定件和能量传输装置等组成。
接触网系统的设计参数包括接触网高度、悬挂偏移、水平偏移、绝缘设计和设备间的距离等,下面将对这些参数进行详细介绍。
接触网高度是指接触网梁的高度,也就是电线的高度。
一般来说,接触网高度的设计需要满足以下要求:首先,要保证电力机车的受电弓能够顺利与接触网接触,不会出现断线或者受电弓脱离的情况;其次,要考虑到列车的震动和弯曲等因素,确保接触网的高度稳定,不会因为变形而影响供电质量;最后,还需要考虑下行列车通过时的安全性,要避免受电弓与接触网发生碰撞。
悬挂偏移是指接触网梁在水平方向上的偏移程度。
接触网悬挂偏移的设计需要考虑到列车的运动状态和轨道的几何条件。
悬挂偏移的大小需要保证列车的受电弓能够顺利与接触网接触,并且在列车加速或制动时,受电弓不会因为悬挂偏移而断开与接触网的接触。
水平偏移是指接触网梁在垂直方向上的偏移程度。
水平偏移的设计需要保证接触网与轨道之间的间距在一个合理的范围内,避免出现接触网与轨道之间的碰撞或者过分远离的情况。
同时,水平偏移还需要考虑到列车的侧摇和弯曲等因素,确保接触网与列车之间的稳定接触。
绝缘设计是指接触网系统中各个部件的绝缘设计。
由于接触网系统的工作环境往往是恶劣的,例如大雨、风沙等,所以对于接触网系统的绝缘设计要求较高。
绝缘设计需要考虑到绝缘材料的选择、绝缘件的布置和绝缘性能的要求等因素,以保证接触网系统正常运行并且安全可靠。
设备间的距离是指接触网系统中各个设备之间的距离。
设备间的距离的设计需要满足以下要求:首先,要保证设备之间有足够的安全距离,以防止电弓和接触网设备发生碰撞;其次,要考虑到设备的维护和检修的便利性,确保设备之间有足够的空间进行维修工作;最后,还需要考虑到设备之间的电气特性,避免因为距离过近而产生干扰。
综上所述,接触网系统的设计参数包括接触网高度、悬挂偏移、水平偏移、绝缘设计和设备间的距离等。
接触网系统概述—接触网的组成

加强线
加强线为改善接触网的电压水平或载流能力,
同接触线并联架设以增加接触网载流截面积的
架空导线;
加
强
线
架空地线
架空地线(GW线):在接触网的接地系
统中,为减少对钢轨的连接,作为接地回路
一部分而专门设置的附加导线。
在支柱顶部架设了一段架空地线。保护线
04 将接触线的
水平负荷传给
支柱。
保护线
保护线(PW线):AT供电方式中与钢轨并联,具有集中地线和牵引电流
屏蔽线作用的导线。
保护线
保护线用接轨线(CPW线):连接保护线、钢轨扼流变压器中性点的导线。
保护线
保护线
当正馈线绝缘击穿或闪络时,如果没
有PW线的存在,支持装置绝缘 子两端将
承受55kV电压,可能使其绝缘闪络,最终
06
07
保护线
加强线
回流线
供电线
供电线又称馈电线,用F表示,它是接触网与牵引变电所、自耦变压器所、
开闭所、分区所之间的连接导线。其作用是将牵引变电所的电能输送到接触网
上,一般送至接触网电分相两侧。
供电线
供电线与接触网同杆架设在支柱田野侧,当有正馈线和其他附加悬挂同杆
架设时,供电线悬挂在最高处。
供电线
速度(km/h)
最大斜率(‰)
斜率的最大波动(‰)
50
25.0
25.0
60
20.0
10.0
100
6.0
3.0
120
4.0
2.0
160
3.3
1.7
200
2.0
1.0
250
接触网工岗位职责
接触网工岗位职责作为电力行业非常重要的一部分,接触网工担负着维护列车电力供应系统的职责。
在铁路运输事业中,接触网工的工作是至关重要的。
接触网工不仅需要具备较高的维修和操作技能,还需要具备熟练的电力知识和标准化操作流程的掌握。
本文将从接触网系统的构成、接触网工的工作职责和需要掌握的技术知识,深入探讨接触网工岗位的职责。
一、接触网系统的构成及其安全问题在了解接触网工的职责前,我们需要先了解一下接触网系统的构成。
接触网系统是指位于铁路、地铁车辆行驶轨道以上空间内,提供给行驶载具(列车)必要电能的高架电力输电系统,它是担负着铁路电气化运输的重要系统。
它由等离子导线、支架、悬挂装置、牵引电缆、支架上部断路器、配电间、刀闸等部件组成,是一种高度复杂的电气系统。
为了确保交通运行的安全,接触网工需要一定的安全意识和技能。
例如,在接触网的施工、检修和维护中,必须确保铁路运输的正常进行,避免接触网系统对人员和环境造成伤害。
二、接触网工的职责接触网工主要负责接触网系统的设备检修及维护。
接触网工要根据现场情况,分类、识别故障、判断设备的故障类型等,快速地定位和修复故障。
接触网工除了日常检修外,还需要组织工作人员定期检查设备、随时掌握接触网系统的工作状态,防范可能的故障。
此外,接触网工还需要制定合理的作业计划和安全方案,确保各种维修操作在安全条件下顺利开展。
因此,接触网工是用电汽车领域中一个重要的职业,他要保证列车的电力能源得到充分的保障。
三、接触网工所需要掌握的技术知识1、了解电气知识。
对于接触网工来说,掌握电力知识是至关重要的。
接触网工需要了解电路原理、AC机电原理和变流器的基本原理等方面的知识。
此外,了解安全电压值、基本电气参数等也可以让接触网工更好地了解电气设备的运作和效率。
2、熟悉设备操作规范。
对于接触网系统中的各种设备,接触网工应该熟悉其操作规范,并且必须严格按照设备操作规范执行操作。
如果在操作过程中出现任何问题,必须及时报告上级处理或者立即妥善处理。
接触网系统概述—电气化铁路概述
刚性架空接触网
刚性架空接触网将接触线夹装在汇流排中,依靠汇流排自身的刚性保持接触 线的固定位置,使接触线不因重力而产生弛度。
电气化铁路的概念 以电力牵引为主要牵引方式的干线铁路称为电气化铁路。
电气化铁道的“三大元件”
牵引变电所
接触网 电力。
02 能综合利用资源,降 低燃料消耗。
03 能降低运输成本, 提高劳动生产率。
电气化铁路的优越性
04 能改善劳动条件,不污染 环境。
防护罩 第三轨
集电靴
第三轨、第四轨 接触轨
第三轨
第四轨
常见的第三轨形式
根据车辆集电靴与导电轨的接触受流方式的不同,车辆接触受流方式有三种形式:
防护罩
导电轨 走行轨
支持绝缘子
防护罩
导电轨 走行轨
支持绝缘子
防护罩 (支持绝缘子)
走行轨 导电轨
上接触式
侧接触式
下接触式
柔性架空接触网
狭义的接触网就是指的柔性架空接触网。 采用柔性线索作为导电具有较好的弹性,跨距大,适应高速电气化铁路的受流, 在干线铁路工程中得到了广泛的应用。
接触网的实现形式
接触网有多种实现形式,广义的接触网包括了接触轨和架空接触网。
接触轨 第三轨、第四轨
架空接触网 刚性架空接触网、柔性架空接触网
接触轨工作原理
接触轨是通过在走行轨道旁设置连续刚性导电“轨道”给电力机车供电。 电力机车通过安装在车辆转向架两侧的集电靴和接触轨的滑动接触取得电能。
绝缘体
轨道 轨枕
05 有利于铁路沿线实现电气 化,促进工农业发展。
电气化铁路存在的问题
01 造成电力网的负序电流和负序电 压,产生高次谐波及功率因数低。
接触网知识点总结
接触网知识点总结一、接触网的定义接触网是一种用来提供电力的设施,通常用于给火车或电车牵引动力。
接触网通常由导线、支持结构和接触系统组成。
导线是输送电能的主要部分,支持结构用来固定导线,接触系统则是用来连接导线和牵引设备的。
接触网的主要作用是提供电力,使火车或电车能够行驶。
二、接触网的种类根据接触网的结构和工作原理,可以将接触网分为多种不同的类型。
常见的接触网类型有悬挂式接触网、刚性悬挂接触网、柔性悬挂接触网等。
接触网的种类不仅影响着其建设和维护的方式,还对牵引系统和车辆的设计产生影响。
三、接触网的结构接触网的结构一般由导线、支架和接触系统组成。
导线通常由导线支架、导线滑板、导线承重机构等部分组成。
支架则是用来支撑导线和固定导线支架的构件。
接触系统主要是用来连接导线和牵引设备的。
四、接触网的工作原理接触网的工作原理主要是利用电能传输的方式,使火车或电车能够获取动力。
当牵引设备与接触网接触时,电能通过接触系统和导线传输到牵引设备中,从而驱动火车或电车行驶。
五、接触网的维护接触网的维护工作主要包括检修、清洁、维护、保养等内容。
接触网的维护工作对线路的安全和运营都具有非常重要的意义。
定期的维护工作不仅可以减少故障发生的概率,还可以延长接触网的使用寿命。
六、接触网的安全接触网的安全是线路运营的重要组成部分。
接触网安全工作主要包括对设备的定期检查、故障排除、应急处理等内容。
保障接触网的安全运营不仅是客运公司、物流公司等相关企事业单位的责任,也是国家法律法规的要求。
七、接触网的发展近年来,随着科技的进步和电气化铁路的不断发展,接触网技术也不断得到改善和创新。
新型的接触网设备不仅在节能减排、运行安全等方面有了一定的进步,还为火车和电车提供了更多元化的服务。
八、接触网的应用接触网目前主要应用于铁路和城市轨道交通系统,为火车和电车提供电力。
接触网的应用使火车和电车能够高速、高效、低成本地运输乘客和货物,在现代交通运输系统中具有重要地位和作用。
地铁柔性接触网系统介绍
门形梁安装效果图
连续门形梁
弹性吊索简单悬挂
简单链形悬挂腕臂结构
库内安装方式
分段绝缘器(单线)
分段绝缘器(双线)
隔离开关
上网电缆连接
避雷器的安装
地铁柔性接触网系统介绍
柔性接触网施工范围
A、停车场、车辆段:含出入段线、试车线、停车场内需电 化线路的基础浇注、立杆、门形梁架设、腕臂、软横跨等 支装; B、设备安装:隔离开关(上网隔离开关、联络开关、手动隔 离开关、库内带接地刀闸开关)、避雷器、分段绝缘器 (单线、双线)等设备;包括上网电缆的敷设安装。 C、均、回流:钢轨至回流箱的电缆连接; D、接地保护:零散支柱间的接地连接,库内悬挂底座之间 的接地,接触网架空地线至变电所接地母排的接地电缆。 E:号码牌、限界门的安装
出入段线、试车线接触网采用简单链形悬挂 车场内接触网采用带弹性吊索的简单悬挂 悬挂组成:
项目 出入段线、试车 线 线材 接触线 承力索 架空地线 线材规格 2*CTAH-120 2*JT-150 1*JT-120 额定张力(N) 2*12 2*12 1*12(最大)
车场线
ቤተ መጻሕፍቲ ባይዱ
接触线
架空地线
1*CTAH-120
柔性接触网供电示意图
刚柔过渡
正线隧道内采用架空刚性悬挂接触网布置方式,车辆段 (停车场)设计于地面上,采用架空柔性悬挂接触网的布置 方式。 一般情况下,地铁接触网的刚柔过渡点均设置在由地下 向地面延伸的出入段线隧道口,由设置在该位置的刚柔过渡 装置,实现刚性接触网与柔性接触网的顺利平滑过渡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录绪论 (1)1.电气化铁道概述 (1)2.电气化铁路的组成 (2)第一章供电系统工作原理 (1)1.电力牵引的制式 (1)2.电力牵引供电系统的组成 (3)3.牵引网与接触网 (6)4.接触网的工作特点 (6)5.对接触网的基本要求 (7)6.接触网的分类 (7)7.接触网的供电方式 (7)8.接触网的电分段 (8)9.架空式接触网的机械分段 (9)第二章接触网的组成 (11)1.架空式接触网的组成及结构 (11)1.1.接触悬挂的种类 (12)1.2.接触悬挂的导线结构与类型 (16)1.3.接触悬挂的下锚方式 (17)1.4.支持与固定装置 (20)1.5.支柱和基础 (24)1.6.接触网的张力和弛度曲线 (26)2.接触轨式接触网组成及结构 (27)2.1.上磨式 (27)2.2.下磨式 (28)2.3.侧面接触式 (28)3.刚性悬挂接触网系统简介 (30)3.1.架空刚性悬挂系统简介 (30)3.2.“Π”型刚性悬挂接触网特点 (31)绪论1.电气化铁道概述采用电力机车为主要牵引动力的铁路称为电气化铁路,它是在19世纪70年代末的欧洲最先出现。
早期的电气化铁路多采用直流供电方式,电压等级较低,需设整流装置,不利于设置在长距离的铁路干线上。
目前国际上普遍采用比较先进的单相工频交流制电气化铁路,它便于升压和减少电能的损耗,可以增加牵引变电所之间的距离,大大降低了建设投资和运营费用。
随着高新技术的发展,特别是计算机技术的应用,使电力机车和牵引供电装置的工作性能不断提高。
低能耗、高效率、高速度的电力牵引已成为世界各国铁路发展趋势,是铁路现代化的标志。
我国电气化铁路自本世纪50年代末发展以来,走过了几十年艰苦创业的历程,根据80年代铁道部确定的以电力牵引为主内燃牵引为辅的技术政策,国家拨款和吸引国外资金等多种方式大力发展电气化铁路,借助改革开放的大好形势相继建成一批高质量、高性能的电气化铁路,已使我国电气化铁路初具规模,形成了良性发展的大好局面,在科学技术的推动下,接触网自动化检测、牵引变电所远程自动控制、微机保护系统等,普遍应用在电气化铁路上。
为了提高铁路运输能力,铁道部又制定了发展高速铁路的计划,可以预测中国电气化铁路的发展有着广阔的前景。
2.电气化铁路的组成由于电力机车本身不携带能源,靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电装置组成的。
牵引供电装置一般分成牵引变电所和接触网两部分,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的“三大元件”。
本书主要讨论和介绍接触网的有关内容。
为便于全面了解电气化铁路,我们对电力机车和牵引变电所与接触网有关的内容作一些简单介绍。
(1)电力机车电力机车靠其顶部升起的受电弓,直接接触导线获取电能。
每台电力机车前后各有一受电弓,由司机控制其升降。
受电弓升起工作时,以(68.6+9.8)N的接触压力紧贴接触线摩擦滑行,将电能引入机车主断路器,再经变压器和硅整流器组整流供给直流牵引电动机,电动机通过齿轮传动使电力机车运行如图0-1所示。
电力机车受电弓直接从接触线上滑行取流,其形式一般有单臂式和双臂式两种,目前一般采用单臂式受电弓。
受电弓顶部的滑板紧贴接触线。
滑板固定在托架上,托架一般采用2mm的铝板冷压制成。
根据接触线材质的不同选用不同材质的滑板。
受电弓的最大工作范围为1250mm。
我国目前使用的电力机车主要是国产韶山型电力机车,投入运用的有SS1、SS3、SS4、SS8等型号及部分进口电力机车。
(2)牵引变电所牵引变电所的主要任务是将电力系统输送来的电能降压,然后以单相供电方式经馈电线送至接触网上,电压变换由牵引变压器进行。
电力系统的三相电改变为单相电是通过牵引变压器的电气接线来实现的。
我国目前所用的牵引变压器有三相式、三相/二相式及单相式三种类型。
三相式变压器线圈接成星形/三角形连接组,连接标号为Y,d11,次边为三角形。
三角形的一角与钢轨和接地网连接,另两角分别接至牵引变电所两边供电分区的接触网上(又称两个供电臂),因此使接触网对地为单相,三相变电所高压侧电压为110 kV,低压侧(又称牵引侧)电压为27.5kV。
单相变电所一般采用两台单相变压器联成开口三角形接线,符号为V/V接法。
单相变电所比较简单,单相变压器利用率较高,但也有其不利的一面,故目前未大量采用。
近年来,我国引进了AT供电方式,其牵引变电所的变压器采用较特殊的接线方式,这种方式称为斯科特接线方式,或者接成另一种称为伍德布里奇接线方式,这样的变电所称为三相/二相变电所。
这种接线方式的特点是变压器次边电压提高至55kV,在其供电臂上并接自耦变压器构成了较为先进的AT供电方式,它与吸流变压器/回流线供电方式一样,形成了防止接触网对附近通信线路产生干扰的接线形式。
牵引变电所一般设有备用电源,采用双回路高压电源供电,以提高供电的可靠性,牵引供电回路应为下列顺序:牵引变电所-馈电线-接触网-电力机车-钢轨-大地或回流线-牵引变电所。
由此可以看出接触网在供电回路中起着十分重要的作用,直接影响着电气化铁道的运行,因此使接触网始终处于良好的工作状态,安全可靠的向电力机车供电,对于保证铁路运输畅通无阻有着极为重大的意义。
第一章供电系统工作原理1.电力牵引的制式对牵引列车的电动车辆或电力机车特性的基本要求:(1)起动加速性能要求起动加速力大而且平稳,即恒定的大的起动力矩,便于列车快速平稳起动。
(2)动力设备容量利用对列车的主要动力设备——牵引电动机的基本性能要求为,列车轻载时,运行速度可以高一些,而列车重载时运行速度可以低一些。
这样无论列车重载或轻载都可以达到牵引电动机容量的充分利用,因为列车的牵引力与运行速度的乘积为其功率容量,这时近于常数。
(3)调速性能列车运输,特别是旅客运输,要求有不同的运行速度,即调速。
在调速过程中既要达到变速,还要尽可能经济,不要有太大的能量损耗,同时还希望容易实现调速。
低频单相交流制是交流供电方式,交流电可以通过变压器升降压,因此可以升高供电系统的电压,到了列车以后再经车上的变压器将电压降低到适合牵引电动机应用的电压等级。
由于早期整流技术的关系,这种制式采用的牵引电动机在原理上与直流串激电动机相似的单相交流整流子电动机。
这种电动机存在着整流换向问题,其困难程度随电源频率的升高而增大,因此采用了“低频”单相交流制,它的供电频率和电压有25 HZ、6.5~11 kV和16 HZ、12~15 kV等类型。
由于用了低频电源使供电系统复杂化,需由专用低频电厂供电,或由变频电站将国家统一工频电源转变成低频电源再送出,因此没有得到广泛应用,只在少量国家的工矿或干线上应用。
“工频单相交流制”。
这种制式既保留了交流制可以升高供电电压的长处,又仍旧采用直流串激电动机作为牵引电动机的优点,在电力机车上装设降压变压器和大功率整流设备,它们将高压电源降压,再整流成适合直流牵引电动机应用的低压直流电,电动机的调压调速可以通过改变降压变压器的抽头或可控制整流装置电压来达到。
工频单相交流制是当前世界各国干线电气化铁路应用较普遍的牵引供电制式。
我国干线电气化铁路即采用这种制式,其供电电压为25kV。
在牵引制的发展过程中曾出现过“三相交流制”的形式,但由于供电网比较复杂,必须要有两根(两相)架空接触线和走行轨道构成三相交流电路,两根架空接触线之间又要高压绝缘,造成的困难和投资更大,因此被淘汰。
关于直流制式的电压等级应用情况大致如下:干线电气化铁路的供电电压有3 kV的,电压没有再提高是因为受到直流牵引电动机端电压的限制,其值一般为l.5 kV左右,用3 kV供电,一般就需要将两台电动机串联联接,再提高供电电压其联接就更复杂,还涉及当时整流装置绝缘水平的问题。
这种制式在原苏联和东欧一些国家应用最普遍。
供电电压为1.2~1.5 kV的直流制多用于工矿和部分国家的干线电力牵引,如日本等国家。
城市轨道交通几乎毫无例外地都采用直流供电制式,这是因为城市轨道交通运输的列车功率并不是很大,其供电半径(范围)也不大,因此供电电压不需要太高,还由于直流制比交流制的电压损失小(同样电压等级下),因为没有电抗压降。
另外由于城市内的轨道交通,供电线路都处在城市建筑群之间,供电电压不宜太高,以确保安全。
基于以上原因,世界各国城市轨道交通的供电电压都在直流550~1500V之间,但其档级很多,这是由各种不同交通形式,不同发展历史时期造成的。
现在国际电工委员会拟定的电压标准为:600 V、750 V和1500V 三种。
后两种为推荐值。
我国国标也规定为750V和1500 V,不推荐现有的600 V。
我国北京地铁采用的是750 V直流供电电压,上海地铁采用的是1500 V直流供电电压。
必须根据各城市的具体条件和要求,综合论证决定。
2.电力牵引供电系统的组成我国和大多数国家一样,电力生产由国家经营管理,因此无论是干线电气化铁路,还是工矿电力牵引和城市轨道交通电力牵引用电均由国家统一电网供给。
为了说明电力牵引供电系统各个组成部分的关系和作用,下面以城市轨道交通直流电力牵引供电系统为例,用示意图1-1表示之。
电厂可能与其用户相距甚远,为了能得到经济输电,必须将输电电压升高,以减少线路的电压损失和能量损耗,因此在发电厂的输出端接入升压变压器以提高输电电压。
目前我国用得最普遍的输电电压等级为110~220 kV。
通常国家供电系统总是把在同一个区域(或大区)的许多发电厂通过高压输电线和变电所联结起来成为一个大的统一的供电系统,向该区域的负荷供电,这样由各级电压输电线将发电厂、变电所和电力用户联结起来的一个发电、输电、变电、配电和用户的统一体被称为电力系统。
组成统一的电力系统有如下的一些优越性。
(1)可以充分利用动力资源。
火力发电厂发出多少电能就需要相应地消耗多少燃料,而其他的某些类型发电厂,它能发出多少电能取决于当时该发电厂的动力资源情况,如水电站的水位高低,它随自然条件的变化而变化,因此,组成统一的电力系统以后,在任何时候,可以动态地调整各种动力资源,以求其发挥最大效益。
(2)减少燃料运输,降低发电成本。
大容量火力发电厂所消耗的燃料是很可观的,如果不用高压远距离输电,则发电厂必然要建在负荷中心附近而不能建在燃料资源的生产地,这样就要大量运输燃料,造成发电成本升高。
采用高压输电电力系统以后就可以解决以上问题,将发电厂建在动力资源丰富的地方。
(3)提高供电的可靠性。
由于供电区域内的负荷是由多个发电厂组成的电力系统共同供电的,这样与单个发电厂独立向自己的负荷供电比较起来,对负荷的供电可靠性就可以提高很多,因为系统内发电厂之间可以起到互为后备的作用。
与此同时,整个系统的发电设备容量也可以减少很多,降低了设备的投资费用。