操作系统PV_operating代码

合集下载

计算机操作系统pv操作

计算机操作系统pv操作

计算机操作系统pv操作1、引言1.1 定义PV操作,全称为P操作(原语操作)和V操作(原语操作),是计算机操作系统中用于实现进程间同步和互斥的重要机制之一。

P 操作用于请求访问临界资源,V操作用于释放临界资源。

1.2 目的本文档旨在提供关于计算机操作系统中PV操作的详细说明,进一步理解PV操作的概念、原理和使用方法,以及相关注意事项和最佳实践。

2、PV操作概述2.1 P操作P操作(Proberen操作)用于请求访问临界资源。

如果临界资源当前已被占用,则进程将被阻塞等待,直到获得资源访问权限。

2.2 V操作V操作(Verhogen操作)用于释放临界资源。

当进程完成对临界资源的访问后,应该及时释放资源,以便其他进程能够获得访问权限。

3、PV操作实现方式3.1 二进制信号量使用二进制信号量实现PV操作是最常见的方式之一。

二进制信号量只能取0或1两种值,用于表示资源的占用状态。

3.2 计数信号量计数信号量可以取多个非负整数值,用于表示资源的可用数量。

进程在请求资源时,如果信号量的值大于0,则减1并继续执行;若信号量值为0,则进程被阻塞等待。

3.3 互斥锁互斥锁是一种特殊的PV操作实现方式,用于实现进程对临界资源的互斥访问。

进程在访问临界资源前,需先获得互斥锁的所有权;在访问完成后,应释放互斥锁。

4、PV操作的应用场景4.1 进程同步PV操作常用于实现进程之间的同步,确保共享资源的安全访问。

通过P操作和V操作的配对使用,可以实现进程的有序执行。

4.2 进程互斥PV操作也可用于实现进程之间的互斥访问,即确保同一时间只有一个进程可以访问共享资源。

使用互斥锁实现的PV操作能够有效避免资源竞争问题。

5、PV操作的注意事项5.1 死锁使用PV操作时,必须避免出现死锁的情况。

死锁是指系统中的多个进程互相等待对方所占有的资源,导致所有进程无法继续执行的情况。

5.2 优先级关系在使用PV操作时,进程的优先级关系可能会对同步和互斥的实现产生影响。

操作系统-PV操作

操作系统-PV操作

未来研究方向和挑战
01
随着云计算、大数据和人工智能等技术的快速发展,操作系统中的并发和并行 处理需求越来越高,PV操作在解决并发和并行处理中的问题也面临着新的挑战 。
02
未来的研究需要进一步探索PV操作在新型计算环境中的应用,例如在分布式系 统、物联网、边缘计算等领域中,PV操作的应用和优化具有重要的研究价值。
详细描述
生产者消费者问题描述了一个共享缓冲区的场景,其中生产者产生数据放入缓冲区,消费者从缓冲区取出数据进 行处理。为了防止缓冲区溢出和数据饥饿,需要使用PV操作来控制对缓冲区的访问。
读者写者问题
总结词
读者写者问题是生产者消费者问题的 变种,主要解决多个读者共享数据和 单个写者修改数据时的同步问题。
03
同时,随着系统规模的扩大和复杂度的增加,PV操作的管理和维护也变得越来 越困难,如何有效地管理和维护PV操作也是未来的重要研究方向之一。
THANKS FOR WATCHING
感谢您的观看
操作系统-pv操作
目 录
• 引言 • PV操作原理 • PV操作实现 • PV操作的应用 • 总结与展望
01 引言
操作系统简介
操作系统是计算机系统的核心软件, 负责管理计算机硬件和应用程序的资 源分配、调度和监控。
操作系统的主要功能包括进程管理、 内存管理、文件管理和设备管理。
PV操作的基本概念
饥饿问题
饥饿问题是当一个或多个进程长期得不到足够的资源,导致其无法正常执行的情况。为避免饥饿问题 ,可以采用一些调度算法,如先来先服务、最短作业优先等,确保每个进程都能获得足够的资源。
04 PV操作的应用
生产者消费者问题
总结词
生产者消费者问题是操作系统中经典的并发循环执行

操作系统PV操作一百题

操作系统PV操作一百题

seller smoker paper 3 match 1 tobacco 2
mutex seller The P,V code Using Pascal vars , S1 ,S2 , S3 ; semaphore ; S:=1 ; S1:=S2:=S3:=0 ; fiag1 , flag2 , fiag3 : Boolean ; fiag1:=flag2:=flag3:=true; cobegin process begin repeat P(S) ; flagi //nago1 nage2 nage3 if flag2 & flag3 then V(S1) ; // else if flag1 & fiag3 then V(S2); // else V(S3) ; // until false ;
AND Swait(empty 2 -(Readers-Writers Problem) Reader (Writer) mutex) Ssignal(full mutex)
1 2 3 Semaphore P V Reader Read Writer P() V() Write
The P,V code Using Pascal rwmutex rmutex readcount var rwmutex, rmutex int readcount = 0; cobegin procedure reader_i begin // i=1,2,?. P(rmutex); Readcount + +; if (readcount = = 1) P(rwmutex); V(rmutex); P(rmutex); Readcount - -; if (readcount = = 0) V(rwmutex); V(rmutex); end procedure Writer_j begin // j = 1,2,?. P(rwmutex); V(rwmutex); end coend The P,V code Using Pascal 1 2 3 rwmutex rmutex var rwmutex, rmutex / 10 semaphore := 1, 10 10 semaphore := 1, 1 /

交通信号灯模拟(PV操作)

交通信号灯模拟(PV操作)

目录第一章课程设计目的和要求 01.1 课程设计目的 01.2 课程设计要求 (1)第二章课程设计任务内容 02.1课程设计任务 02.2 课程设计原理 02.3 课程设计内容 (4)第三章详细设计说明 (5)3.1 模块描述 (5)3.2 性能描述 (5)3.3 输入项 (6)3.4 输出项 (6)3.5 数据结构 (7)3.6 算法介绍 (7)3.7 流程图 (8)3.7.1 主程序流程图 (8)3.7.2 算法流程图 (9)3.8 接口描述 (11)3.9 限制条件 (13)第四章件使用说明 (13)4.1 系统开发与运行环境 (13)4.2系统的运行说明 (13)4.3 运行结果 (13)第五章课程设计心得体会 (19)附录1:参考文献 (20)附录2:程序清单 (21)交通信号灯模拟第一章课程设计目的和要求1.1 课程设计目的根据学院课程安排,在大三的第一个学期我们开设了操作系统这门课程,操作系统可以说是是计算机系统的核心和灵魂,是计算机系统必不可少的组成部分。

通过学习,对于操作系统的运行方式以及设计理念有了较清楚的认识。

要想真正学好并理解操作系统这门课程,不但需要理解操作系统的概念和原理,还需要加强操作系统实验,上机进行编程实践,现在一学期的课程已经结束,本次课程设计在同学们掌握理解该课程的基础上,对操作系统内部的一些具体项目的实现方法进行实战演练,通过实践将知识彻底掌握。

操作系统课程设计是该课程重要的实践教学环节。

通过这次课程设计,一方面可以使学生更透彻地理解操作系统的基本概念和原理,摆脱抽象的理解,从实践中将理论具体化;另一方面,通过课程设计还可以加强学生的实践能力,培养学生独立分析问题、解决问题、应用知识的能力和创新精神。

本次课程设计的题目为交通信号灯模拟,在熟练掌握课本所讲解的计算机的P 操作和V操作的原理的基础上,利用C++程序设计语言在windows操作系统下模拟实现交通信号灯的模拟,一方面加深对原理的理解,另一方面提高根据已有原理通过编程解决实际问题的能力,为进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。

2022年西安外事学院计算机科学与技术专业《操作系统》科目期末试卷B(有答案)

2022年西安外事学院计算机科学与技术专业《操作系统》科目期末试卷B(有答案)

2022年西安外事学院计算机科学与技术专业《操作系统》科目期末试卷B(有答案)一、选择题1、现代操作系统中,文件系统都有效地解决了重名(即允许不同用户的文件可以具有相同的文件名)问题。

系统是通过()来实现这一功能的。

A.重名翻译结构B.建立索引表C.树形目录结构D.建立指针2、位示图可用于()A.实现文件的保护和保密B.文件目录的查找C.磁盘空间的管理D.主存空间的共享3、某系统中有11台打印机,N个进程共享打印机资源,每个进程要求3台打印机。

当N的取值不超过()时,系统不会发生死锁。

A.4B.5C.6D.74、使用TSL(TestandSetLock)指令实现进程互斥的伪代码如下所示。

do{while(TSL(&lock));criticalsection;lock=FALSE;}while(TRUE);下列与该实现机制相关的叙述中,正确的是()A.退出临界区的进程负责唤醒阻塞态进程B.等待进入临界区的进程不会主动放弃CPUC.上述伪代码满足“让权等待”的同步准则D.while(TSL(&lock))语句应在关中断状态下执行5、在个交通繁忙的十字路口,每个方向只有一个车道,如果车辆只能向前直行,而不允许转弯和后退,并未采用任何方式进行交通管理。

下列叙述正确的是()。

A.该十字路口不会发生死锁,B.该十字路口定会发生死锁C.该上字路口可能会发生死锁,规定同时最多3个方向的车使用该十字路是最有效的方法D.该十字路口可能会发生死锁,规定南北方向的两个车队和东西方向的两个车队互斥使用十字路口是最有效的方法6、适合多道程序运行的存储管理中,存储保护是为了()A.防止一个作业占用同个分区B.防止非法访问磁盘文件C.防止非法访问磁带文件D.防止各道作业相互干扰7、在下述存储管理方案中,()管理方式要求作业占用连续的存储空间。

A.分区B.分页C.分段D.段页式8、()不是操作系统的功能。

A.CPU管理B.存储管理C.网络管理D.数据管理9、执行系统调用的过程包括如下主要操作:①返回用户态②执行陷入(trap)指令③传递系统调用参数④执行相应的服务程序正确的执行顺序是()A.②->③->①->④B.②->④->③->①C.③->②->④->①D.③->④->②->①10、在采用SPOOLing技术的系统中,用户暂时未能打印的数据首先会被送到()存储起来。

操作系统实验——PV操作实现生产者消费者模型

操作系统实验——PV操作实现生产者消费者模型
2. 生产者类
/** * 单个生产者类 * @author Vfdxvffd * @count 生产的物品数量标号 */ class Producer implements Runnable{ int count = 0; //数量 @Override public void run() { while(count < 20) { //最多生产20件商品
Global.empty.Wait(); /*要生产物品了,给剩余空 闲缓冲区数量--,如果减完后变为负数,则说明当前没 有空闲缓冲区,则加入等待队列*/ //临界区,生产商品 int index = count % 2; Global.buffer[index] = count; System.out.println("生产者在缓冲区"+index+"中生产了物品"+count); count++;
假如生产者号生产了0号商品,但此时他还没做Global.pCount++这一步操作,CPU将执行权切换到生产者2号,这时Global.pCount的值还是 刚刚的0,没有加1,所以又会生产出一个0号商品,那消费者也同理,消费完还没加1,就被切换了执行权。
那就有个问题,如果我们将Global.pCount++这一步提前能不能解决问题呢,当然也是不行的,因为可能++完还没输出就被切换执行权,那下次 执行权回来时候就会继续执行输出操作,但此时的Global.pCount的值已经不知道加了多少了。
/*remove a process P from the waiting queue*/ wakeup(P); } }
信号量的应用

操作系统名称解释

1.操作系统:操作系统(OS,Operating system): 操作系统是计算机系统中的一个系统软件;是这样一些程序模块的集合:它们管理和控制计算机系统中的硬件及软件资源,合理的组织计算机工作流程,以便有效地利用这些资源为用户提供一个功能强大,使用方便和可扩展的工作环境,从而在计算机与其用户之间起到接口的作用。

2. 分时系统:是指多个用户分享使用同一台计算机,即是把计算机的系统资源(主要是cpu)在时间上加以分割,形成一个个的时间段,每个时间段称为一个“时间片”,每个用户依次使用一个时间片,从而可以将cpu工作时间轮流地提供给多个用户使用。

3. 实时系统:指计算机对于外来信息能够及时进行处理,并在控制对象允许时间范围内作出快速反应,实时系统对响应时间的要求比分时系统更高。

实时系统按其使用方式不同可分为:实时控制系统、实时信息处理系统。

4. 多道程序设计:是在计算机内存中同时存放几道相互独立的程序,使它们在管理程序控制之下,相互穿插的运行。

两个或两个以上程序在计算机系统中同处于开始个结束之间的状态。

这就称为多道程序技术运行的特征:多道、宏观上并行、微观上串行5. 系统调用:系统调用(System call): 它是操作系统提供给软件开发人员的唯一接口,开发人员可利用它使用系统功能。

6. 作业调度:根据一定的原则,从输入井的后备作业队列中选择适当的作业,为它分配内存等资源,并将其调入内存投入运行。

又称高级调度,远程调度。

7. 作业控制块:OS向用户提供一组作业控制语言,用户用这种语言书写作业说明书,然后将程序、数据和作业说明书一齐交给系统操作员。

8. 并发性:又称为共行性是指能处理多个同时性活动的能力。

9.并行性:指同时发生的两个并发事件。

10. 进程:是可并发执行的程序。

在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位,也是称活动、路径或任务,它有两方面性质:动态性、并发性。

第三章进程同步与通信作业习题与答案

第三章一.选择题<50题>1.以下_B__操作系统中的技术是用来解决进程同步的.A.管道B.管程C.通道D.DMA2.以下_B__不是操作系统的进程通信手段.A.管道B.原语C.套接字D.文件映射3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__.A.3B.2C.1D.04.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__.A.3,2,1,0,-1B.2,1,0,-1,-2C. 1,0,-1,-2,-3D.4,3,2,1,05.下面有关进程的描述,是正确的__A__.A.进程执行的相对速度不能由进程自己来控制B.进程利用信号量的P、V 操作可以交换大量的信息C.并发进程在访问共享资源时,不可能出现与时间有关的错误D.P、V操作不是原语操作6.信号灯可以用来实现进程之间的_B__.A.调度B.同步与互斥C.同步D.互斥7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__.A.没有进程进入临界区B.有1个进程进入了临界区C. 有2个进程进入了临界区D. 有1个进程进入了临界区并且另一个进程正等待进入8. 信箱通信是一种_B__方式A.直接通信B.间接通信C.低级通信D.信号量9.以下关于临界区的说法,是正确的_C__.A.对于临界区,最重要的是判断哪个进程先进入B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以打断进程A而自己进入临界区C. 信号量的初值非负,在其上只能做PV操作D.两个互斥进程在临界区内,对共享变量的操作是相同的10. 并发是指_C__.A.可平行执行的进程B.可先后执行的进程C.可同时执行的进程D.不可中断的进程11. 临界区是_C__.A.一个缓冲区B.一段数据区C.一段程序D.栈12.进程在处理机上执行,它们的关系是_C__.A.进程之间无关,系统是封闭的B.进程之间相互依赖相互制约C.进程之间可能有关,也可能无关D.以上都不对13. 在消息缓冲通信中,消息队列是一种__A__资源.A.临界B.共享C.永久D.可剥夺14. 以下关于P、V操作的描述正确的是__D_.A.机器指令B. 系统调用C.高级通信原语D.低级通信原语15.当对信号量进行V源语操作之后,_C__.A.当S<0,进程继续执行B.当S>0,要唤醒一个就绪进程C. 当S<=0,要唤醒一个阻塞进程D. 当S<=0,要唤醒一个就绪16.对临界区的正确论述是__D_.A.临界区是指进程中用于实现进程互斥的那段代码B. 临界区是指进程中用于实现进程同步的那段代码C. 临界区是指进程中用于实现进程通信的那段代码D. 临界区是指进程中访问临界资源的那段代码17. __A__不是进程之间的通信方式.A.过程调用B.消息传递C.共享存储器D.信箱通信18. 同步是指进程之间逻辑上的__A__关系.A.制约B.调用C.连接D.排斥19.正在运行的进程在信号量S上作P操作之后,当S<0,进程将进入信号量的__A__.A.阻塞队列B.提交队列C.后备队列D.就绪队列20.某个信号量S初值为3,当前值为-2,则等待在该信号量上的进程数为_B__个.A.1B.2C.3D.521.管理若干进程共享某一资源的相关临界区应满足三个要求,其中__A__不考虑.A一个进程可以抢占己分配给另一进程的资源B.任何进程不应该无限地逗留在它的临界区中C.一次最多让一个进程在临界区执行D.不能强迫一个进程无限地等待进入它的临界区22、_C__是只能由P和v操作所改变的整型变量.A共享变量B.锁 C.整型信号量D.记录型信号量23.对于整型信号量,在执行一次P操作时,信号量的值应_C__.A.不变B.加1C减1D.减指定数值24.在执行v操作时,当信号量的值__D_时,应释放一个等待该信号量的进程.A>0B.<0c.>=0D.<=025.Pv操作必须在屏蔽中断下执行,这种不可变中断的过程称为_B__.A初始化程序B.原语c.子程序D控制模块26.进程间的互斥与同步分别表示了各进程间的__A__.A.竞争与协作B.相互独立与相互制约c.不同状态D.动态性与并发性27.并发进程在访问共享资源时的基本关系为_B__.A.相互独立与有交往的B.互斥与同步C并行执行与资源共享D信息传递与信息缓冲28.在进程通信中,_B__常用信件交换信息.A.低级通信B.高级通信C.消息通信D.管道通信29.在间接通信时,用send<N,M>原语发送信件,其中N表示_C__.A.发送信件的进程名B.接收信件的进程名 C.信箱名D.信件内容30.实现进程互斥时,用_C__对应,对同一个信号量调用Pv操作实现互斥.A.一个信号量与一个临界区B.一个信号量与—个相关临界区C.一个信号量与一组相关临界区 D.一个信号量与一个消息31.实现进程同步时,每一个消息与一个信号量对应,进程__D_可把不同的消息发送出去. A.在同一信号量上调用P操作B在不同信号量上调用P操作在同一信号量上调用v操作D.在不同信号量上调用v操作32.临界区是指__D_.A.并发进程中用于实现进程互斥的程序段B.并发进程中用于实现进程同步的程序段C.并发进程中用户实现进程通信的程序段D.并发进程中与共享变量有关的程序段33.相关临界区是指__D_.A.一个独占资源B.并发进程中与共享变量有关的程序段C.一个共享资源D.并发进程中涉与相同变量的那些程序段34.P、V操作是__A__.A.两条低级进程通信原语B.两组不同的机器指令C.两条系统调用命令D.两条高级进程通信原语35.对进程的管理和控制使用_B__.A.指令B.原语C.信号量D.信箱通信用P、V操作管理临界区时,信号量的初值应定义为_C__.A.一1B.0C.1D.任意值37.用V操作唤醒一个等待进程时,被唤醒进程的状态变为_B__.A.等待B.就绪C.运行D.完成38.进程间的同步是指进程间在逻辑上的相互_B__关系.A.联接B.制约 C.继续D.调用39.__D_是一种只能进行P操作和V操作的特殊变量.A.调度B.进程C.同步D.信号量40.用P、V操作可以解决__A__互斥问题.A.一切B.某些C.正确D.错误41.对于两个并发进程,设互斥信号量为mutex,若mutex=0,则_B__.A.表示没有进程进入临界区B.表示有一个进程进入临界区C.表示有一个进程进入临界区,另一个进程等待进入D.表示有两个进程进入临界区42.两个进程合作完成一个任务,在并发执行中,一个进程要等待其合作伙伴发来消息,或者建立某个条件后再向前执行,这种制约性合作关系被称为进程的__A__.A.同步B.互斥C.调度D.执行43.为了进行进程协调,进程之间应当具有一定的联系,这种联系通常采用进程间交换数据的方式进行,这种方式称为__D_.A.进程互斥B.进程同步C.进程制约D.进程通信44. 两个进程合作完成一项任务.在并发执行中,一个进程要等待其合作伙伴发来消息,或建立某个条件后再运行,这种制约性合作关系被称为进__A__.A.同步B.执行C.互斥D.调度45. 为了进行进程协调,进程之间应当具有一定的联系,这种联系通常采用进程间交换数据的方式进行,这种方式通常称为_C__.A. 进程互斥B. 进程同步C. 进程通信D. 进程制约46.不是信号量能实现的功能是__D_.A.进程同步B.进程互斥C.执行的前趋关系D.进程的并发执行47. 若P、V操作的信号量S初值为2,当前值为-1,则表示有_B__等待进程.A.0个B.1个C.2个D.3个在进程通信中,常_C__通过变量、数组形式来实现.A.高级通信B.消息通信C.低级通信D.管道通信49.管道通信是以_B__进行写入和读出.A.消息为单位B.自然字符流C.文件D.报文50.进程间的基本关系为_B__.A.相互独立与相互制约B.同步与互斥C.行执行与资源共享D.信息传递与信息缓冲二.填空题<50空>1. 进程的_顺序性_____是指进程在顺序处理器上的执行是按顺序进行的.2.当一个进程独占处理器顺序执行时,具有__封闭性____和__可再现件____两个特性. 3.进程的封闭性是指进程的执行结果只取决于__进程本身____,不受外界影响.4.进程的可再现性是指当进程再次重复执行时,必定获得___相同___的结果.5.一个进程的工作在没有全部完成之前,另一个进程就可以开始工作,则称这些进程为__可同时执行的___.6.临界区是指并发进程中与__共享变量____有关的程序段.7.__相关临界区____是指并发进程中涉与到相同变量的那些程序段.8.只要涉与相同变量的若干进程的相关临界区__互斥执行____,就不会造成与时间有关的错误.9.进程的___互斥___是指当有若干进程都要使用某一共享资源时,任何时刻最多只允许一个进程去使用.10.Pv操作是在一个信号量上进行的__不可被中断____的过程,这种过程也称为__原语___. 11.利用P、v操作管理相关临界区时,必须成对出现,在进入临界区之前要调用__ P操作____,在完成临界区操作后要调用__ v操作____.12.进程的___同步___是指并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消息.13.__同步机制____能把它进程需要的消息发送出去,也能测试自己需要的消息是否到达. 14.P、v操作不仅是实现___进程互斥___的有效工具,而且也是一种简单而方便的___同步___工具.15.用P、v操作实现进程同步时,调用___ P操作___测试消息是否到达,调用__ v操作____发送消息.24.用P、v操作实现生产者消费者之间的同步时,在访问共享缓冲区的__前____和__后____分别调动P操作和v操作.16.进程的互斥实际上是进程__同步____的一种持殊情况.17.进程的互斥是进程间___竞争___共享资源的使用权,其结果没有__固定的必然关系____,而进程的同步则在共享资源的并发进程之间有一种__必然的____依赖关系.18.Pv操作也可看作为进程间的一种通信方式,由于只交换了少量的信息,故称为__低级通信方式____19.通过专门的通信机制实现进程间交换大量信息的通信方式称为__进程通信____. 20.采用高级通信方式时,进程间用__信件____来交换信息.21.最基本的通信原语有两条,它们是__ send ____原语和___ receive ___原语.22.进程通信方式有两种:__直接通信____和_间接通信_____.23.直接通信是固定在__一对____进程之间通信,而间接通信以信箱为媒体实现通信. 24.一个信息可以由__信箱说明____和__信箱体____两部分组成.25.进程间通过信件交换信息,可实现___进程同步___.26.并发带来的问题全局变量的共享问题、操作系统很难最佳的管理资源的分配、定位程序的错误很困难、保证进程执行结果的正确性.27.并发原理有并发带来的问题、进程的交互、进程互斥、进程同步.28.管理的结构有条件变量、管理的结构.29.进程通信表现在效率低、通信对用户不透明.30.Monitors:管程.三.名词解释<20题>1.进程通信:进程之间的信息交换.2.临界区:操作系统中把并发进程中访问临界资源那段代码.3.临界资源:操作系统中将一次仅允许一个进程访问的资源.4.进程同步:指多个进程中发生的事件存在着某种时序关系必须协同动作、相互配合,以共同完成一个任务.5.信号量机制:它是一种公认的卓有成效的进程同步机制.6.管程:一个共享资源的数据结构以与一组能为并发进程在其上执行的针对该资源的一组操作,这组操作能同步进程和改变管程中的数据.7.CWAIT<C>:调用进程的执行在条件C上挂起,管程现在可被另一个进程使用.8.CSIGNAL<C>:恢复在cwait上因为某些条件而挂起的进程的执行.9.Message:报文.10.Client/Server Interaction:客户∕服务器交换.11.单向通信:只允许发送进程向接收进程发送消息,反之不行.12.双向通信:允许一个进程向另外一个进程发送消息,也可以反过来由另一个进程向发过消息的进程回送消息.13.点对点方式:用一条链路将两个进程连接,通信的完成只与这两个进程有关.14.多点方式:用一条链路连接多个进程〔>2〕.15.无容量通信链路:通信链路上没有用于暂存数据的缓冲区,因而不能暂存任何消息.16.有容量通信链路:通信链路中设置了缓冲区,因而可以暂存数据,缓冲区的数目越大,通信链路的容量越大.17.链路的容量:通信链路上是否有用于暂存数据的缓冲区.18.阻塞方式:操作方要等待操作结束,才能继续执行.19.非阻塞方式:操作方在提交后立即返回,不需要等待.20.管道:指用于连接一个读进程和一个写进程,以实现它们之间通信的共享文件,又称为pipe 文件.四.简答题<20题>以下进程之间存在相互制约关系吗?是什么制约关系?为什么?⑴几个同学去图书馆借同一本书;⑵篮球比赛中两队同学争抢篮板球;⑶果汁流水线生产中捣碎、消毒、灌装、装箱等、各道工序;⑷商品的入库和出库;⑸工人做工与农民种粮.答:〔1〕答:存在互斥关系,因为同一本书只能借给一个同学.〔2〕答:存在互斥关系,因为篮球只有一个,两队只能有一个队抢到球〔3〕答:存在同步关系,因为最后一道工序的开始依赖于前一道工序的完成.〔4〕答:存在同步关系,因为商品若没有入库就无法出库,若商品没有出库,装满了库房,也就无法再入库.〔5〕答:工人与农民之间没有相互制约关系.说明PV存在为什么要设计成原语?答:用信号量S表示共享资源,其初值为1表示有一个资源.设有两个进程申请该资源,若其中一个进程先执行P操作.P操作中的减1操作有3跳与其指令组成:去S送寄存器R;R-1送S.若P操作不用原语实现,在执行了前述三条指令中的2条,即还未执行R送S时〔此时S值仍为1〕,进程被剥夺CPU,另一个进程执行也要执行P操作,执行后S的值为0,导致信号量的值错误.正确的结果是两个进程执行完P操作后,信号量S的值为-1,进程阻塞.设有一个售票大厅,可容纳200人购票.如果厅内不足200人,则允许进入,超过则在厅外等候;售票员某时只能给一个购票者服务,购票者买完票后就离开.试问:⑴购票者之间是同步关系还是互斥关系?⑵用PV操作描述购票者的工作过程.答:购票者之间是互斥关系.<2> semaphore empty=200;semaphore mutex=1;void buyer<>{P<empty>;P<mutex>;购票;V<mutex>;V<empty>;}分析生产者消费者问题中多个P操作颠倒引起的后果.答:semaphore mutex=1;semaphore empty=n;semaphore full=0;int i,j;ITEM buffer[n];ITEM data_p,data_c;void producer<>void consumer<>{while<true>{while<true>{produce an item in data_p;{P<full>;P<mutex>;P<mutex>;P<empty>;data_c=buffer[j];buffer[i]=data_p;j=<j+1>%n;i=<i+1>%n;V<mutex>;V<mutex>;V<empty>;V<full>;}consume the item in data_c}}}请简述进程的互斥与同步之间的异同.答:进程的同步与互斥是指进程在推进时的相互制约关系.为了保证进程的正确运进程之间的制约关系体现为:进程的同步和互斥.进程同步:它主要源于进程合作,是进程间共同完成一项任务时直接发生相互作用的关系.为进程之间的直接制约关系.在多道环境下,这种进程间在执行次序上的协调是必不可少的.行以与相互合作的进程之间交换信息,需要进程之间的通信.进程互斥:主要源于资源共享,是进程之间的间接制约关系.6.什么是进程的顺序性和并发性?答:进程的顺序性是指进程在顺序的处理器上严格地按顺序执行.若系统中存在一组可同时执行的过程,则该组程序具有并发性.可同时执行的进程是指这些进程执行时在时间上是重叠的,即一个进程的工作没有全部完成之前,另一个进程就可以开始工作.7.为什么并发进程执行时可能会产生与时间有关的错误?如何避免?答:有交往的并发进程可能会同时使用共享资源,如果对这种情况不加控制,由于进程占用处理器的时间、执行的速度和外界的影响等,就会引起与时间有关的错误.只要使若干并发进程的相关临界区互斥执行,就可避免造成这类错误.8.简述临界区的相关临界区的概念.答:临界区是指并发进程中与共享变量有关的程序段.相关临界区是指并发进程中涉与到相同变量的那些程序段.9.管理相关临界区有些什么要求?答:管理相关临界区有三点要求:<1>一次最多让一个进程在临界区执行;<2>任何一个进入临界区执行的进程必须在有限的时间内退出临界区;<3>不能强迫一个进程无限地等待进入它的临界区.10.用Pv操作实现进程间同步与互斥应注意些什么?答:<1>对每一个共享资源<含变量>都要设立信号量,互斥时对一个共享资源设一个信号量,同步时对一个共享资源可能要设两个或多个信号量,视由几个进程来使用该共享变量而定.<2>互斥时信号量的初值可大于或等于1,同步时,至少有一个信号量的初值大于等于1.<3>Pv操作一定要成对调用,互斥时在临界区前后对同一信号量作Pv操作,同步时则对不同的信号量作Pv操作,Pv操作的位置一定要正确.<4>对互斥和同步混合问题.PV操作可能会嵌套,—般同步的Pv操作在外,互斥的Pv操作在内.11.何谓进程通信?最基本的通信原语有哪些?答:通过专门的通信机制实现进程间交换大量信息的通信方式称为进程通信.最基本的通信原语有send原语和receive原语,前者负责发送信件,后者负责接收信件.12.直接通信与间接通信有何区别?答:直接通信是固定在一对进程间进行的,而间接通信时以信箱为媒体实现通信.因此在send 和receive原语中,第一个参数互不相同.直接通信时分别为接收者进程名和发送者进程名,而间接通情时均为信箱名.13.线程与进程的根本区别是什么?答:在采用线程技术的操作系统中,线程与进程的根本区别在于:进程是资源的分配单位,而线程是调度和执行单位.并发带来的问题有哪些?答:①全局变量的共享问题②操作系统很难最佳的管理资源的分配③定位程序的错误很困难④保证进程执行结果的正确性.进程交互的3中情况?答:①进程之间不知道对方的存在.②进程间接知道对方.③进程直接知道对方存在.临界区有哪些进入原则?答:①空闲让进.②忙则等待.③让权等待.④有限等待.对共享资源的读写操作的限制条件是什么?答:⑴允许任意多的读进程同时读.⑵一次只允许一个写进程进行写操作.⑶如果有一个写进程正在进行写操作,禁止任何读进程进行读操作.在生产者―消费者问题中需要注意以下几个问题?答:⑴把共享缓冲区池中的N个缓冲区视为临界资源,进程在使用时,首先要检查是否有其他进程在临界区,如果确认没有时再进入.⑵信号量full表示有数据的缓冲区的数量,初值为0.⑶多个P操作的次序不能颠倒.管程的特征有哪些?答:⑴管程内部的局部变量只能通过管程中的过程进行访问,其他任何外部过程都不能对其进行访问.⑵进程只能通过调用管程的某一个过程才能进入管程,这样可以保证所有进入管程的进程有统一的入口.⑶任何时刻,只能有一个进程在管程中执行,其他调用管程的任何进程都被挂起,以等待管程变为可用,即对管程实施互斥访问.进程通信主要表现在那些方面?答:⑴效率低.。

计算机PV操作系统总结

计算机PV操作系统总结计算机PV操作系统总结一:概述1.1 引言在计算机系统中,操作系统是一种重要的软件组件,负责管理和协调计算机硬件与软件资源,提供用户和其他软件的接口,以实现计算机系统的正常运行和高效利用。

本文档总结了PV操作系统的基本原理、功能模块及其应用。

1.2 目的本文档旨在介绍PV操作系统的核心概念以及其在计算机系统中的作用,为开发人员和用户提供一个全面的参考。

二:PV操作系统的基本原理2.1 进程管理2.1.1 进程概念2.1.2 进程调度2.1.3 进程同步2.1.4 进程通信2.2 内存管理2.2.1 内存分配2.2.2 虚拟内存2.2.3 内存保护2.3 文件系统管理2.3.1 文件组织2.3.2 文件存储2.3.3 文件操作2.4 设备管理2.4.1 设备概念2.4.2 设备分配2.4.3 设备驱动三:PV操作系统的功能模块3.1 用户界面3.1.1 命令行界面3.1.2 图形用户界面3.2 系统调用接口3.2.1 系统调用类型3.2.2 系统调用的实现3.3 文件系统3.3.1 文件管理3.3.2 目录管理3.3.3 文件权限控制3.4 进程管理3.4.1 进程创建与撤销3.4.2 进程调度算法3.4.3 进程通信方式3.5 内存管理3.5.1 内存分配策略3.5.2 空间置换算法3.5.3 虚拟内存管理3.6 设备管理3.6.1 设备驱动程序3.6.2 设备分配策略3.6.3 设备中断处理四:PV操作系统的应用领域4.1 个人计算机4.2 服务器系统4.3 嵌入式系统4.4 移动设备附件:1. PV操作系统示例代码2. PV操作系统用户手册法律名词及注释:1. 版权:法律规定的对原创作品的独占权利。

2. 许可证:一种法律许可文件,允许使用者在符合某些条款和条件的情况下使用特定的软件或作品。

3. 用户协议:一种法律文件,规定了软件或服务的使用条款和条件,用户使用软件或服务前需要同意并接受这些条款和条件。

pv操作例题详细解释

pv操作例题详细解释摘要:1.PV 操作概述2.PV 操作的例子3.PV 操作的详细解释4.总结正文:一、PV 操作概述PV 操作,全称为“过程变量操作”,是一种在计算机程序设计中用于处理过程(函数、方法等)的输入和输出的技巧。

通过PV 操作,程序员可以在不改变过程本身的代码的情况下,灵活地控制过程的输入和输出,从而实现对程序流程的控制。

二、PV 操作的例子假设有一个计算平方的函数`square`,其代码如下:```def square(x):return x * x```我们可以通过PV 操作,对这个函数进行输入和输出的控制。

三、PV 操作的详细解释1.定义PV 操作在Python 中,可以通过`pv`函数来实现PV 操作。

`pv`函数接受两个参数,分别是过程的名称和操作符。

操作符可以是“+”(输入)、“-”(输出)或“*”(执行)。

例如,对`square`函数进行PV 操作,可以定义如下:```pv("square", "+")```这表示对`square`函数进行输入操作,即将输入值传递给`square`函数。

2.执行PV 操作定义了PV 操作后,可以通过`execute`函数来执行PV 操作。

`execute`函数的参数是待执行的过程和操作符定义的元组。

例如,对`square`函数执行输入操作,可以执行如下:```execute(("square", "+"), 3)```这表示将输入值3 传递给`square`函数,执行其输入操作。

3.获取PV 操作的结果执行PV 操作后,可以通过`get`函数来获取操作的结果。

`get`函数的参数是待获取结果的过程和操作符定义的元组。

例如,对`square`函数执行输入操作后,可以获取其结果如下:```result = get(("square", "+"), 3)print(result) # 输出9```这表示获取`square`函数执行输入操作后的结果,即将输入值3 平方后的值9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include "basic.h"
semphore sem[5];
pnode * pr[20];
//wait operation
void wait(char * sname,int pid)
{
int fflag,pflag;
pnode *p,*p1;
semphore *s;
fflag=0;
pflag=0;
for(int i=0;i<5;i++)
{
if(!strcmp(sem[i].name,sname))//find semaphore by name {
s=&sem[i];
fflag=1;
break;
}
}
for(i=0;i<20;i++) //find pcb by pid
{
if(pr[i]->node->pid == pid)
{
p1 = pr[i];
pflag=1;
break;
}
}
if(!fflag) //semaphore is not exist
{
printf("the semphore '%s' is not exist!\n",sname); return;
}
if(!pflag) //pid is not exist
{
printf("the process '%d' is not exist!\n",pid);
return;
}
s->count--; //semaphore’s value -1
if(s->count>=0) //this pcb get the semaphore
s->curpid = p1->node->pid;
else
{
if(s->wlist) //the link is not NULL, add the pcb to the last {
for(p=s->wlist;p->next;p=p->next);
p->next=p1;
}
else //this pcb is the first pcb be added to the wait list
s->wlist=p1;
}
}
//signal operation
void signal(char *sname)
{
int fflag=0;
for(int i=0;i<5;i++)
{
if(!strcmp(sem[i].name,sname)) //find the semaphore by name {
fflag=1;
break;
}
}
if(fflag) //find it
{
sem[i].count++;
if(sem[i].wlist) //there are processes in the wait list
{
sem[i].curpid = sem[i].wlist->node->pid;
sem[i].wlist = sem[i].wlist->next;
}
}
else
printf("the semphore '%s' is not exist!\n",sname);
}
//show semphore infomation
void showdetail()
{
int i;
pnode *p;
printf("\n");
for(i=0;i<5;i++)
{
if(sem[i].count<=0)
{
printf("%s (curp %d): ",sem[i].name,sem[i].curpid);
p=sem[i].wlist;
while(p)
{
printf("%5d",p->node->pid);
p=p->next;
}
}
else
printf("%s : ",sem[i].name);
printf("\n");
}
}
/*****************************************************************************/ /* don't change */
void init()
{
//init semaphore
strcat(sem[0].name,"s0");
strcat(sem[1].name,"s1");
strcat(sem[2].name,"s2");
strcat(sem[3].name,"s3");
strcat(sem[4].name,"s4");
for(int i=0;i<5;i++)
{
sem[i].wlist=NULL;
sem[i].count=1;
}
//init process
for(i=0;i<20;i++)
{
pr[i] = new pnode;
pr[i]->node=new pcb;
pr[i]->node->pid=i;
pr[i]->brother=NULL;
pr[i]->next=NULL;
pr[i]->sub=NULL;
}
}
void main()
{
short cflag,pflag;
char cmdstr[32];
char *s,*s1,*s2;
initerror();
init();
for(;;)
{
cflag=0;
pflag=0;
printf("cmd:");
scanf("%s",cmdstr);
if(!strcmp(cmdstr,"exit")) //exit the program break;
if(!strcmp(cmdstr,"showdetail"))
{
cflag = 1;
pflag = 1;
showdetail();
}
else
{
s = strstr(cmdstr,"wait"); //create process
if(s)
{
cflag=1;
//getparameter
s1 = substr(s,instr(s,'(')+1,instr(s,',')-1);
s2 = substr(s,instr(s,',')+1,instr(s,')')-1);
if(s1 && s2)
{
wait(s1,atoi(s2));
pflag=1;
}
}
else
{
s=strstr(cmdstr,"signal");//delete process
if(s)
{
cflag=1;
s1 = substr(s,instr(s,'(')+1,instr(s,')')-1);
if(s1)
{
signal(s1);
pflag=1;
}
}
}
}
if(!cflag) geterror(0); else if(!pflag) geterror(1); }
}。

相关文档
最新文档