安徽合肥市包河区2017年最新中考数学模拟试卷及答案
【中考模拟2017】安徽省合肥市_2017年九年级数学中考模拟试卷_五(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若|a|=1,|b|=4,且a、b异号,则a+b等于()A.5B.﹣5C.3D.±32.下列运算正确的是()A.5m+2m=7m2B.-2m2•m3=2m5C.(-a2b)3=﹣a6b3D.(b+2a)(2a-b)=b2﹣4a23.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位4.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.化简﹣等于()A.B. C.﹣D.﹣6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.57.下列调查中,调查方式的选取不合适的是()A.为了了解全班同学的睡眠状况,采用普查的方式B.对“天宫二号”空间实验室零部件的检查,采用抽样调查的方式C.为了解一批 LED 节能灯的使用寿命,采用抽样调查的方式D.为了解全市初中生每天完成作业所需的时间,采取抽样调查的方式8.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A. B.C.D.9.如图,直线分别与反比例函数y=﹣2x-1和y=3x-1的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x于点D,则四边形ABDC的面积是()A.3.5B.4C.4.5D.510.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是()A.πcm2B.2πcm2C.4πcm2D.8πcm2二、填空题:11.已知b<a<0,则ab,a2,b2的大小为 .12.解因式:2x2+4x+2= .13.已知⊙O的内接正六边形周长为12cm,则这个圆的半径是 cm.14.如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为时,使得由点B、O、C组成的三角形与ΔAOB相似(至少写出两个满足条件的点的坐标).三、计算题:15.先化简,再求代数式的值.其中=tan600-300.16.y(y﹣4)=﹣1﹣2y.四、解答题:17.要在河边修建一个水泵站,分别向张村、李庄送水(如图).修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由.18.一块矩形的草地,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y与x之间的函数关系式;(2)若要使草地的面积增加32 m2,长和宽都增加多少米?19.某校生物兴趣小组把一块沿河的三角形废地(如图)开辟为生物园(设AB段河岸为直线),已知∠ACB=90°,∠CAB=55°,BC=80米,学校决定在点C处建一个蓄水池,利用管道从河中取水,已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)20.如图,点P(+1,﹣1)在双曲线y=kx-1(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=kx-1(x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.五、综合题:22.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式;(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD2+DE2的算术平方根取最小值时,求点E的坐标.23.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△AB1C。
【中考模拟2017】安徽合肥市 2017年 九年级数学中考模拟试卷 八(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若∣x∣=7,∣y∣=5,且x+y>0,那么x-y的值是( )A.2或12B.-2或12C.2或-12D.-2或-122.下列计算正确的是( )A.2x+x=2x2B.x2∙x3=x5C.(x2)3=x5D.(2x)3=2x33.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10114.一个四棱柱被一刀切去一部分,剩下的部分可能是()A.四棱柱B.三棱柱C.五棱柱D.以上都有可能5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A. B. C. D.6.下列计算正确的是()A.3a+4b=7abB.7a-3a=4C.3a+2a=5a2D.3a2b-4a2b=-a2b7.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()9.在平面直角坐标系中,将直线l:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式正确的是()1A.将l1向左平移1个单位B.将l1向右平移1个单位C.将l1向上平移2个单位D.将l1向上平移1个单位10.如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)二、填空题:11.已知关于x,y的方程组的解为正数,则 .12.因式分解:x2(x-2)-16(x-2)= .13.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.三、计算题(本大题共2小题,共16分)15.计算:.16.解方程:(x+1)(x﹣2)=2x(x﹣2)四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.下表给出了代数式﹣x2+bx+c与x的一些对应值:(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.19.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)20.如图,点P(+1,﹣1)在双曲线y=kx-1(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=kx-1(x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.21.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=0.775,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C,D的坐标:C(,),D(,);②当m= 时,△ACD的周长最小;(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.23.已知,四边形ABCD是正方形,∠MAN= 45º,它的两边,边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC =45º,AD⊥BC于点D,且BD=2,CD=3,求AD的长.小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题。
2017年安徽省合肥市二模试卷(解析版)

2017年安徽省合肥市中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x44.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×1055.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.12.若函数y=,则当函数值y=15时,自变量x的值是.13.观察下列图形规律:当n=时,图形“△”的个数是“●”的个数的2倍.14.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣2.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是°;这次调查中为D类的留守儿童有人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于.2017年安徽省合肥市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.【考点】由三视图判断几何体.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选D.4.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,内错角相等以及三角形外角和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出小东站在中间的结果数,然后根据概率公式求解.【解答】解:设小东和爸爸、妈妈分别为:甲、乙、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以小东在中间的概率=.故选:B.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式方程.【分析】设快车的速度为x千米/时,根据快车比慢车早40分钟到达乙站,列方程求解.【解答】解:设快车的速度为x千米/时,可得:,故选C8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三角形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表示出AE=DE=2EG=2x、DG=x,继而在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从而得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x•=(2﹣2)x,∴==,故选:D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中心对称图形.【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该大长方形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该大长方形的周长是120,∴2(a+2b+c)=120.根据图示,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,方程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是一元二次方程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成立,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这一关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是一元二次方程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是一元二次方程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,自变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代入函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n 个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n 的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3×1; n=2时,“•”的个数是6=3×2; n=3时,“•”的个数是9=3×3; n=4时,“•”的个数是12=3×4; ∴第n 个图形中“•”的个数是3n ; 又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=; n=3时,“△”的个数是6=; n=4时,“△”的个数是10=;∴第n 个“△”的个数是;由3n=,解得n=11或n=0(舍去), 故答案为:11.14.如图,反比例函数y=(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .,则下列结论正确的是 ①④ (将正确的结论填在横线上).①s △OEB =s △ODB ,②BD=4AD ,③连接MD ,S △ODM =2S △OCE ,④连接ED ,则△BED ∽△BCA .【考点】反比例函数综合题.【分析】①正确.由四边形ABCD 是矩形,推出S △OBC =S △OBA ,由点E 、点D 在反比例函数y=(x >0)的图象上,推出S △CEO =S △OAD =,即可推出S △OEB =S △OBD . ②错误.设点B (m ,n ),D (m ,n′)则M (m , n ,),由点M ,点D 在反比例函数y=(x >0)的图象上,可得m•n=m•n′,推出n′=n ,推出AD=AB ,推出BD=3AD ,故②错误.③错误.因为S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,S △CEO =S △OAD =•a•b=ab ,所以S △ODM :S △OCE =ab : ab=3:2,故③错误.④正确.由==3,推出DE ∥AC ,推出△BED ∽△BCA .【解答】解:∵四边形ABCD 是矩形, ∴S △OBC =S △OBA ,∵点E 、点D 在反比例函数y=(x >0)的图象上, ∴S △CEO =S △OAD =,∴S △OEB =S △OBD ,故①正确,设点B (m ,n ),D (m ,n′)则M (m , n ,), ∵点M ,点D 在反比例函数y=(x >0)的图象上, ∴m•n=m•n′, ∴n′=n , ∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,∵S △CEO =S △OAD =•a•b=ab , ∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC , ∴BE=3EC , ∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确. 故答案为①④三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】首先把括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入数值计算即可. 【解答】解:原式=•(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x ﹣1>3x 的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可. 【解答】解:解不等式x ﹣1>3x ,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直角三角形的应用.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:工件如图摆放时的高度约为58.8cm.18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反比例函数y=(x>0)的图象上,得到方程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反比例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反比例函数的解析式为:y=.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直角三角形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是144°;这次调查中为D类的留守儿童有20人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)根据A类人数是10,所占的百分比是10%,据此即可求得总人数;(2)利用360°乘以对应的百分比即可求得C类圆心角的度数;利用总人数乘以对应的百分比求得D类的人数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)抽查的人数是10÷10%=100(人);(2)C类所占的圆心角是360°×=144°,D类的留守儿童人数所占的百分比是:=40%,则D类的人数是100×(1﹣10%﹣30%﹣40%)=20(人),故答案是:144;20;(3)出现较为严重问题及以上的人数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从而可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最大值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即月产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最大值,此时W=2650,即当月产量x(套)为35套时,这种产品的利润W(万元)最大,最大利润是2650万元.八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三角形内角和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成比例,得出AC2=AB•AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三角形内角和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB•AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB•AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB•AD=AC2=16,当DA⊥DB时,△DAB的最大,最大面积为8,故答案为:8.2017年3月29日7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2017年安徽省合肥三十五中数学中考模拟试卷及参考答案PDF

A.
B.
C
.
D.
二、填空题: 11. (3 分)不等式 2x+7>3x+4 的正整数解是 . .
12. (3 分)多项式﹣5mx3+25mx2﹣10mx 各项的公因式是
13. (3 分)已知扇形的半径为 6cm,圆心角的度数为 120°,则此扇形的弧长为
cm. 14. (3 分)如图,已知等边△ABC 的边长为 3,点 E 在 AC 上,点 F 在 BC 上,且 AE=CF=1,则 AP•AF 的值为 .
(1)根据表格中的数据,确定 b,c,n 的值; (2)设 y=﹣x2+bx+c,直接写出 0≤x≤2 时 y 的最大值. 19.如图,某大楼顶部有一旗杆 AB,甲乙两人分别在相距 6 米的 C、D 两处测得 B 点和 A 点的仰角分别是 42°和 65°,且 C、D、E 在一条直线上.如果 DE=15 米, 求旗杆 AB 的长大约是多少米?(结果保留整数) (参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)
A.
B.
C.
D. )
5. (3 分)使分式 A.6
的值等于零的 x 是(
B.﹣1 或 6 C.﹣1 D.﹣6 ,﹣a, 中( )
6. (3 分)式子 x+y,﹣2x,ax2+bx﹣c,0,
A.有 5 个单项式,2 个多项式 B.有 4 个单项式,2 个多项式 C.有 3 个单项式,3 个多项式 D.有 5 个整式 7. (3 分)统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取 组距为 10,可以分成( A.10 组 )
2017 年安徽省合肥三十五中中考数学模拟试卷
(完整word版)2017安徽中考数学试卷(含答案).docx

2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。
(完整word版)2017安徽中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A .12- B .12- C .2D .-22.计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯ 5.不等式320x ->的解集在数轴上表示为( )A .B . C. D .6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCDS S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A .29B .34 C.52 D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos 60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长. (参考数据:sin 750.97︒≈,cos 750.26︒≈,2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD 二、11、312、22b a13、 14、40803三、15、解:原式12322.16、解:设共有x 人,根据题意,得8374x x , 解得7x ,所以物品价格为87353(元). 答:共有7人,物品的价格为53元.四、17、解:在Rt BDF △中,由sinDFBD得, 2sin600sin 4560030024232DFBD °≈(m).在Rt ABC △中,由cosBCAB可得, cos600cos 756000.26156BCAB °(m).所以423156579DE DF EFDFBC(m).18、(1)如图所示;(2)如图所示;(3)45五、19、21n1212n n n11216n n n 134520、(1)证明:∵B D ∠∠,B E ∠∠,∴D E ∠∠, ∵CE AD ∥,∴180E DAE ∠∠°. ∴180D DAE ∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形. (2)证明:过点O 作OMEC ,ONBC ,垂足分别为M 、N .∵四边形AECD 是平行四边形,∴AD EC . 又AD BC ,∴EC BC ,∴OMON ,∴CO 平分BCE ∠.六、21、解:(1)(2)因为2 2.23,所以222s s s 甲乙丙,这说明甲运动员的成绩最稳定. (3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P. 七、22.解:(1)设y kx b ,由题意,得501006080k b k b ,解得2200k b ,∴所求函数表达式为2200y x .(2)240220022808000W x x x x .(3)22228080002701800Wx x x ,其中4080x ,∵20,∴当4070x 时,W 随x 的增大而增大,当7080x 时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC ,90ABC BCF ∠∠°, 又90AGB ∠°,∴90BAE ABG ∠∠°,又90ABG CBF ∠∠°,∴BAE CBF ∠∠, ∴ABE BCF △≌△(ASA),∴BE CF .②证明:∵90AGB ∠°,点M 为AB 中点,∴MG MA MB ,∴GAM AGM ∠∠, 又∵CGE AGM ∠∠,从而CGE CGB ∠∠,又ECG GCB ∠∠,∴CGE CBG △∽△, ∴CE CGCGCB,即2CG BC CE ,由CFG GBMCGF ∠∠∠,得CFCG .由①知,BE CF ,∴BE CG ,∴2BE BC CE .(2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBEBA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CNBE ,由AB DN ∥知,CN CG CFAM GM MB, 又AM M B ,∴FC CN BE ,不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC , 于是51tan 2FC BE CBFBCBC∠,(方法二)不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x ,解得1512x ,2512x (舍去),即512BE , 作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC , 设MN y ,则2GN y ,5GM y ,∵GN AN BEAB ,即1221512y y,解得125y,∴12GM,从而GM MAMB ,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB ∠°, 由(1)知BE CF ,于是51tan 2FC BE CBFBCBC∠.。
2017年安徽中考数学试题及答案
2017年安徽中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.5答案:B2. 已知三角形ABC的内角A、B、C满足A+B=2C,且A=60°,则角C的度数为?A. 30°B. 45°C. 60°D. 90°答案:A3. 计算下列表达式的值:(2x-3)(2x+3)-(3x-2)^2A. 4x^2 - 13x + 6B. 4x^2 + 13x - 6C. 4x^2 - 13x - 6D. 4x^2 + 13x + 6答案:A4. 若方程x^2 - 6x + 9 = 0有两个相等的实数根,则该方程的根为?A. 3B. -3C. 0D. 9答案:A5. 函数y=kx+b的图象经过点(1,2)和(2,3),则k和b的值分别为?A. k=1, b=1B. k=1, b=0C. k=-1, b=3D. k=-1, b=1答案:A6. 已知等腰三角形的两边长分别为3和6,下列哪个是它的周长?A. 9B. 12C. 15D. 18答案:C7. 一个不透明的袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率为?A. 1/2B. 3/5C. 2/5D. 4/5答案:B8. 已知函数f(x)=x^2-4x+3,下列哪个是它的对称轴?A. x=-1B. x=1C. x=2D. x=4答案:C9. 计算下列三角函数的值:sin(30°+45°)A. √2/2B. √3/2C. 1D. √2答案:D10. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题3分,共15分)11. 已知直角三角形的两直角边长分别为3和4,它的斜边长为______。
答案:512. 计算下列表达式的值:(a+2)(a-2)-(a-1)^2,其中a=3。
2017年安徽省中考数学二模试卷解析及答案
2017年安徽省中考数学⼆模试卷解析及答案2017年安徽省中考数学⼆模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)每⼩题都给出代号为A、B、C、D的四个选项,其中只有⼀个是正确的,请把正确选项的代号写在题后的括号内,每⼀⼩题选对得4分,不选、选错或选出的代号超过⼀个的(不论是否写在括号内)⼀律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的⼩⽴⽅体组成的⽴体图形的主视图和左视图,那么这个⽴体图形不可能是()A.B. C. D.【考点】由三视图判断⼏何体.【分析】依次分析所给⼏何体从正⾯看及从左⾯看得到的图形是否与所给图形⼀致即可.【解答】解:A、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正⽅形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2?x2=x4【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;完全平⽅公式.【分析】结合幂的乘⽅与积的乘⽅、同底数幂的乘法的概念和运算法则进⾏求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2?x2=x4,计算正确,本选项正确.故选D.4.2016年2⽉初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学⽣约为27600⼈,与去年相⽐增加300多⼈,⽤科学记数法表⽰“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平⾏线的性质;三⾓形的外⾓性质.【分析】根据两直线平⾏,内错⾓相等以及三⾓形外⾓和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,⼜∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄⾦周”期间,⼩东和爸爸、妈妈外出旅游,⼀家三⼈随机站在⼀排拍照纪念,⼩东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展⽰所有6种等可能的结果数,再找出⼩东站在中间的结果数,然后根据概率公式求解.【解答】解:设⼩东和爸爸、妈妈分别为:甲、⼄、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以⼩东在中间的概率=.故选:B.7.甲、⼄两个车站相距96千⽶,快车和慢车同时从甲站开出,1⼩时后快车在慢车前12千⽶,快车⽐慢车早40分钟到达⼄站,快车和慢车的速度各是多少?设快车的速度为x千⽶/时,则下列⽅程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式⽅程.【分析】设快车的速度为x千⽶/时,根据快车⽐慢车早40分钟到达⼄站,列⽅程求解.【解答】解:设快车的速度为x千⽶/时,可得:,故选C8.如图所⽰,△ABC是等边三⾓形,点D为AB上⼀点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三⾓形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表⽰出AE=DE=2EG=2x、DG=x,继⽽在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从⽽得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x?=(2﹣2)x,∴==,故选:D.9.如图,原有⼀⼤长⽅形,被分割成3个正⽅形和2个长⽅形后仍是中⼼对称图形.若原来该⼤长⽅形的周长是120,则分割后不⽤测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中⼼对称图形.【分析】⾸先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该⼤长⽅形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来⼤长⽅形的周长的,所以它们的周长不⽤测量就能知道,⽽图形③的周长不⽤测量⽆法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该⼤长⽅形的周长是120,∴2(a+2b+c)=120.根据图⽰,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不⽤测量就能知道,图形③的周长不⽤测量⽆法知道.∴分割后不⽤测量就能知道周长的图形的标号为①②.故选:A.10.⼀元⼆次⽅程m1x2+x+1=0的两根分别为x1,x2,⼀元⼆次⽅程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的⼤⼩关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,⽅程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成⽴,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这⼀关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是⼀元⼆次⽅程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.化简:﹣=.【考点】⼆次根式的加减法.【分析】先把各根式化为最简⼆次根式,再根据⼆次根式的减法进⾏计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,⾃变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代⼊函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】⾸先根据n=1、2、3、4时,“?”的个数分别是3、6、9、12,判断出第n个图形中“?”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n的值是多少即可.【解答】解:∵n=1时,“?”的个数是3=3×1;n=2时,“?”的个数是6=3×2;n=3时,“?”的个数是9=3×3;n=4时,“?”的个数是12=3×4;∴第n个图形中“?”的个数是3n;⼜∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,解得n=11或n=0(舍去),故答案为:11.14.如图,反⽐例函数y=(x>0)的图象经过矩形OABC对⾓线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是①④(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.【考点】反⽐例函数综合题.=S△OBA,由点E、点D在反【分析】①正确.由四边形ABCD是矩形,推出S△OBC=S△OAD=,即可推出S△OEB=S△OBD.⽐例函数y=(x>0)的图象上,推出S△CEO②错误.设点B(m,n),D(m,n′)则M(m,n,),由点M,点D在反⽐例函数y=(x>0)的图象上,可得m?n=m?n′,推出n′=n,推出AD=AB,推出BD=3AD,故②错误.=S△OBD﹣S△BDM=?b?a﹣?b?a=ab,S△CEO=S△OAD=③错误.因为S△ODMab=ab,所以S△ODM:S△OCE=ab:ab=3:2,故③错误.④正确.由==3,推出DE∥AC,推出△BED∽△BCA.【解答】解:∵四边形ABCD是矩形,=S△OBA,∴S△OBC∵点E、点D在反⽐例函数y=(x>0)的图象上,=S△OAD=,∴S△CEO=S△OBD,故①正确,∴S△OEB设点B(m,n),D(m,n′)则M(m,n,),∵点M,点D在反⽐例函数y=(x>0)的图象上,∴m?n=m?n′,∴n′=n ,∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =?b?a ﹣?b?a=ab ,∵S △CEO =S △OAD =?a?b=ab ,∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC ,∴BE=3EC ,∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确.故答案为①④三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】⾸先把括号内的分式进⾏通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代⼊数值计算即可.【解答】解:原式=(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可.【解答】解:解不等式x﹣1>3x,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.现有⼀个“Z”型的⼯件(⼯件厚度忽略不计),如图⽰,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该⼯件如图摆放时的⾼度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直⾓三⾓形的应⽤.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:⼯件如图摆放时的⾼度约为58.8cm.18.在平⾯直⾓坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中⼼,将△AEF作位似变换且缩⼩为原来的,在⽹格内画出⼀个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利⽤⽹格特点和旋转的性质,画出点O,B对应点E,F,从⽽得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从⽽得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.如图,在平⾯直⾓坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反⽐例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反⽐例函数的解析式.【考点】待定系数法求反⽐例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反⽐例函数y=(x>0)的图象上,得到⽅程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反⽐例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反⽐例函数的解析式为:y=.20.如图,已知△ABC为直⾓三⾓形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆⼼O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直⾓三⾓形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平⾏线的性质和等腰三⾓形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,⼜∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出⼤省,农民外出务⼯增长家庭收⼊的同时,也⼀定程度影响了⼦⼥的管理和教育,缺少管理和教育的留守⼉童的学习和⼼理健康状况等问题⽇趋显现,成为社会关注的焦点.该省相关部门就留守⼉童学习和⼼理健康状况等问题进⾏调查,本次抽样调查了该省某县部分留守⼉童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下⾯两幅不完整的统计图,请根据图中的信息解决下⾯的问题.(1)在这次随机抽样调查中,共抽查了多少名学⽣留守⼉童?(2)扇形统计图中C类所占的圆⼼⾓是144°;这次调查中为D类的留守⼉童有20⼈;(3)请你估计该县20000名留守⼉童中,出现较为严重问题及以上的⼈数.【考点】条形统计图;全⾯调查与抽样调查;⽤样本估计总体;扇形统计图.【分析】(1)根据A类⼈数是10,所占的百分⽐是10%,据此即可求得总⼈数;(2)利⽤360°乘以对应的百分⽐即可求得C类圆⼼⾓的度数;利⽤总⼈数乘以对应的百分⽐求得D类的⼈数;(3)利⽤总⼈数乘以对应的百分⽐即可求解.【解答】解:(1)抽查的⼈数是10÷10%=100(⼈);(2)C类所占的圆⼼⾓是360°×=144°,D类的留守⼉童⼈数所占的百分⽐是:=40%,则D类的⼈数是100×(1﹣10%﹣30%﹣40%)=20(⼈),故答案是:144;20;(3)出现较为严重问题及以上的⼈数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业⽣成⼀种节能产品,投放市场供不应求.若该企业每⽉的产量保持在⼀定的范围,每套产品的⽣产成本不⾼于50万元,每套产品的售价不低于120万元.已知这种产品的⽉产量x(套)与每套的售价y1(万元)之间满⾜关系式y1=190﹣2x.⽉产量x(套)与⽣成总成本y2(万元)存在如图所⽰的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求⽉产量x的取值范围;(4)当⽉产量x(套)为多少时,这种产品的利润W(万元)最⼤?最⼤利润是多少?【考点】⼆次函数的应⽤.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从⽽可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最⼤值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即⽉产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最⼤值,此时W=2650,即当⽉产量x(套)为35套时,这种产品的利润W(万元)最⼤,最⼤利润是2650万元.⼋、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对⾓线AC平分,且AC2=AB?AD.我们称该四边形为“可分四边形”,∠DAB称为“可分⾓”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,且AC=4,则△DAB 的最⼤⾯积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三⾓形内⾓和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成⽐例,得出AC2=AB?AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三⾓形内⾓和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB?AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB?AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB?AD=AC2=16,当DA⊥DB时,△DAB的最⼤,最⼤⾯积为8,故答案为:8.。
安徽省合肥市包河区2017年最新中考模拟数学试卷(2)及答案
2017年九年级数学中考模拟试卷一、选择题:1.计算-5-(-2)×3的结果等于()A.-11B.-1C.1D.112.下列计算正确的是()A.2a•3a=6aB.(﹣a3)2=a6C.6a÷2a=3aD.(﹣2a)3=﹣6a33.火星和地球的距离约为34000000千米,用科学记数法表示34000000的结果是()千米.A.0.34×108B.3.4×106C.34×106D.3.4×1074.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图5.下列算式中,你认为正确的是()6.若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.57.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC 等于()A.1:2B.1:3C.1:4D.2:39.已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.4B.5C.6D.710.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm二、填空题:11.如图的天平中各正方体的质量相同,各小球质量相同,第一架天平是平衡的,若使第二架天平平衡,则下面天平右端托盘上正方体的个数为.12.因式分解:(a+b)2﹣4b2=.13.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.14.如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则=.三、计算题:15.16.解方程:5x2+2x﹣1=0(用公式法解)四、解答题:17.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)18.求出抛物线的开口方向、对称轴、顶点坐标。
【中考模拟2017】安徽省合肥市 2017年九年级数学中考模拟试卷 六(含答案)
2017年九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2的绝对值是()A.2B.﹣2C.D.﹣2.若(-5a m+1b2n-1)·(2a n b m)=-10a4b4,则m-n的值为( )A.-1B.1C.-3D.33.为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元C.530×108元D.5.30×108元4.如图所示图形中,不是正方体的展开图的是()A. B. C. D.5.化简÷(1+)的结果是( )6.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A.abc﹣1B.x2﹣2C.3x2+2xy4D.m2+2mn+n27.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户8.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A.ΔADE∽ΔAEFB.ΔECF∽ΔAEFC.ΔADE∽ΔECFD.ΔAEF∽ΔABF9.已知关于x的一次函数,其中实数k满足0<k<1,当自变量x在1≤x≤2范围内时,此函数的最大值为( )A.1B.2C.kD.2k-k-110.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣二、填空题:11.关于x对不等式(2a-b)x+a-5b>0的解集是x<1,则关于x的不等式2ax-b>0的解集是12.分解因式:x3﹣2x2+x= .13.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为.三、计算题:15.计算:|1-|+3tan30°-()0-(-)﹣1.16. (2x+1)2+15=8(2x+1)四、解答题:17.在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°.画出旋转后的图形.18.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年九年级数学中考模拟试卷
一、选择题:
1.下列说法正确的是( )
A.没有最小的正数
B.﹣a表示负数
C.符号相反两个数互为相反数
D.一个数的绝对值一定是正数
2.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()
A.M<N
B.M>N
C.M=N
D.不能确定
3.下列结论正确的是( )
A.若a2=b2,则a=b;
B.若a>b,则a2>b2;
C.若a,b不全为零,则a2+b2>0;
D.若a≠b,则 a2≠b2.
4.小强用8块棱长为 3 cm的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )
A.从左面看这个积木时,看到的图形面积是27cm2
B.从正面看这个积木时,看到的图形面积是54cm2
C.从上面看这个积木时,看到的图形面积是45cm2
D.分别从正面、左面、上面看这个积木时,看到的图形面积都是72cm2
5.计算的正确结果是()
A.0
B.
C.
D.
6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )
7.下列调查中,调查方式选择合理的是()
A.了解妫水河的水质情况,选择抽样调查
B.了解某种型号节能灯的使用寿命,选择全面调查
C.了解一架Y-8GX7新型战斗机各零部件的质量,选择抽样调查
D.了解一批药品是否合格,选择全面调查
8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()
A.①与②相似
B.①与③相似
C.①与④相似
D.②与④相似
9.如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一
象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()
A.逐渐减小 B.逐渐增大 C.先增大后减小 D.不变
10.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A. B.2 C. D.3
二、填空题:
11.若关于x的不等式(a﹣2)x>a﹣2解集为x<1,化简|a﹣3|= .
12.分解因式:27x2+18x+3= .2x2-8= 。
13.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为
14.如图,正五边形的边长为2,连对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,则MN= ;。