光电子技术

合集下载

光电子技术的应用和前景

光电子技术的应用和前景

光电子技术的应用和前景光电子技术是指将光学、电学、电子学、材料科学等多学科技术相结合,以光为信息传输的媒介,实现信息处理和控制的技术。

在现代科技的发展中,光电子技术作为一种新兴技术,正在受到越来越多的关注和重视。

本文将重点探讨光电子技术的应用和前景。

一、医疗领域光电子技术在医疗领域的应用得到了广泛的关注。

其中,光纤技术已经在许多医疗设备中得到了应用,例如内窥镜、外科手术设备等。

通过光纤技术,可以使医生在手术过程中观察到更加清晰的图像,从而提高手术的准确性和安全性。

此外,激光治疗仪也是一种常见的光电子医疗设备,可以用于治疗皮肤病、肿瘤等疾病,其效果显著。

二、军事领域光电子技术在军事领域的应用也非常广泛。

在军事侦查中,红外线探测器可以帮助士兵发现潜在的危险,并提供战场信息。

激光雷达技术可以透过雾、雨和烟雾等障碍,探测目标位置。

此外,光纤通信技术也在军事通信方面发挥着重要作用,可以提供高速、高带宽的通信能力,保证军队间的通信畅通。

三、能源领域光电子技术在能源领域的应用也非常广泛。

太阳能电池板就是利用光电技术将太阳能转化为电能的一种设备。

此外,太阳能水分解技术也可以通过光电子技术来实现,将太阳能转化为氢能,作为一种新型能源来使用。

四、智能家居领域光电子技术在智能家居领域的应用也非常广泛。

光电门禁系统可以通过摄像头识别用户的面部,实现无需钥匙开门的功能。

智能灯具可以根据光线强度和时间智能调节亮度,达到省电的效果。

另外,智能监控系统也可以通过光学摄像头进行监控,实时记录家庭的动态。

五、汽车领域光电子技术在汽车领域的应用也在不断地扩展。

例如,汽车的自动驾驶技术,就需要借助雷达、激光雷达等光电子设备来进行环境检测。

同时,LED车灯也成为近年来汽车领域中的一项新技术,通过光电子技术来实现照明和辅助驾驶。

六、光电子技术的前景随着科技的不断发展,光电子技术的应用前景也非常广阔。

随着5G通信技术的不断普及和使用,光纤通信技术的需求也将不断增长。

光电子技术的发展与应用

光电子技术的发展与应用

光电子技术的发展与应用光电子技术,作为一门交叉学科,融合了光学、电子学和信息技术的研究成果,为现代科技发展提供了重要的支持和推动力。

本文将探讨光电子技术的发展历程以及在不同领域中的广泛应用。

一、光电子技术的发展历程光电子技术的起源可以追溯到19世纪末的电磁理论发展。

随着光学、电子学和信息技术的不断进步,光电子技术逐渐成为一个独立的研究领域,并得到了广泛的应用。

以下是光电子技术的一些重要里程碑:1. 光电效应的发现1905年,爱因斯坦提出光电效应的理论,该理论解释了材料受光照射时产生的电子排斥现象。

这一重要发现对于后来的光电子技术的发展起到了关键作用。

2. 半导体器件的发展20世纪50年代,半导体技术的快速发展为光电子技术的进一步发展提供了基础。

半导体材料的特殊性质使其在光电子器件的制造中具有独特的优势。

3. 光纤通信技术的突破20世纪60年代末,光纤通信技术的突破标志着光电子技术的新时代的到来。

光纤通信以其大带宽、低损耗和高速率的优势,使得信息传输变得更加便捷和高效。

4. 激光技术的应用激光技术的发展在光电子技术中占据着重要地位,激光器的出现使得光电子在通信、医疗、测量和材料加工等领域都有了广泛的应用。

二、光电子技术的应用领域1. 光通信光通信是光电子技术的重要应用之一。

利用光纤传输信息具有大带宽、低损耗和高速率的优势,可以满足现代社会对大容量、高速率通信的需求。

光通信技术已经广泛应用于长距离通信、数据中心互连和宽带接入等领域。

2. 光存储技术光存储技术是指利用光的记忆和存储功能来实现信息的存储和检索。

光存储器件具有容量大、读写速度快和耐久性强的优点,目前已经广泛应用于光盘、蓝光光盘、固态硬盘等储存介质。

3. 光电显示技术光电显示技术是利用光电效应将电信号转换为光信号,实现信息显示的技术。

目前常见的光电显示技术包括液晶显示、有机发光二极管(OLED)和量子点显示。

这些技术在平板电视、智能手机和电子书等电子产品中得到广泛应用。

光电子技术知识点

光电子技术知识点

光电子技术知识点光电子技术是一门研究光与电子相互作用的学科,它涉及到光的产生、传输、操控以及光与电子的相互转换等方面的知识。

光电子技术在现代科学和工程领域中具有广泛的应用,包括通信、能源、医学、材料科学等多个领域。

本文将介绍一些光电子技术的基本知识点。

第一,光的特性。

光是一种电磁波,具有波动性和粒子性。

光的波长和频率决定了它的颜色和能量。

光的传播速度是光速,约为3×10^8米/秒。

光的传播可以受到材料的折射、反射和散射等现象的影响。

第二,光的产生。

光可以通过多种方式产生,例如热辐射、激光、荧光等。

其中,激光是一种特殊的光源,具有单色性、相干性和定向性等特点,被广泛应用于科学研究、医疗、通信等领域。

第三,光的传输。

光的传输可以通过光纤实现。

光纤是一种具有高折射率的细长材料,可以将光信号通过全反射的方式传输。

光纤具有低损耗、大带宽和抗电磁干扰等优点,在通信领域得到广泛应用。

第四,光的操控。

光的操控可以通过光学器件实现。

光学器件包括透镜、棱镜、偏振器等,可以对光进行聚焦、分光、偏振等操作。

光学器件在光通信、成像、激光加工等领域中起着重要的作用。

第五,光与电子的相互转换。

光与电子的相互转换可以通过光电效应和光伏效应实现。

光电效应是指当光照射到金属或半导体表面时,产生电子的释放现象。

光伏效应是指当光照射到半导体材料中时,产生电子和空穴的产生和分离现象。

光电效应和光伏效应在太阳能电池、光电二极管等器件中得到应用。

综上所述,光电子技术是一门研究光与电子相互作用的学科,涉及到光的特性、产生、传输、操控以及光与电子的相互转换等知识点。

光电子技术在现代科学和工程领域中具有广泛的应用前景,为我们的生活和工作带来了许多便利和创新。

随着科技的不断进步,光电子技术将继续发展,为人类社会的进步做出更大的贡献。

光电子技术简介

光电子技术简介

4、我国的光电子技术
我国已经逐步实现了量子阱材料和器件、 DFB激光器、光电集成芯片和光子集成芯片 等关键技术的突破,进而研制成功了用于高 速光通信、光存储和光显示的几十种关键器 件,并形成了商品化。目前我国18个光电子 产业化基地蓬勃兴起,正在形成独具特色的 “中国硅谷”。
4.2 光电子技术
一、概念
1、含义: 含义:
是继微电子技术之后发展的新型高技术, 是继微电子技术之后发展的新型高技术, 是电子技术与光子技术自然交叉与扩展而成 的新兴学科。 的新兴学科。
2、发展历程:
(1)开端:1960年世界第 一台红宝石激器的问世, 标志着这一学科的开端。 (2)突破性发展:20世纪70年代“双异质 结半导体激光器”和“石英光纤”两大技 术思想的提出,使光电子技术有了突破性 的发展。
二、应用
1、、信息存 储、信息显示、激光加工、军用光电技术
2、光通信技术:
特点: (1)通信容量大; (2)通信质量高,抗干扰性 强; (3)保密性好; (4)原料足,价格低。
3、光盘:
(1)特点:存储密度高,存储时间长,非接触式读写信 息及信息的信噪比高。 (2)发展方向: 第一,在不改变现有光盘尺寸的同时,极大地 提高 光盘的存储密度和容量。 第二,向三维方向发展。 (3)蓝光光盘: 作为DVD光盘的下一代光盘格式,用以存储高 画质的影音以及高容量的资料。一个单层的蓝光光盘的容 量为25GB或27GB,目前已经研发出4层容量为100GB 的光 盘。

光电子技术基础

光电子技术基础

光电子技术基础•光电子技术概述•光源与光辐射•光电探测器与光电转换目录•光学系统与光路设计•光电子器件与工艺•光电子技术应用实例光电子技术概述01CATALOGUE光电子技术的定义与发展光电子技术的定义光电子技术是研究光与电子相互作用及其应用的科学领域,涉及光的产生、传输、调制、检测和处理等方面。

光电子技术的发展历程自20世纪初爱因斯坦提出光电效应以来,光电子技术经历了从基础研究到应用研究的逐步发展,现已成为现代科技领域的重要分支。

光电子技术在通信领域的应用主要包括光纤通信、无线通信和卫星通信等,实现了高速、大容量的数据传输。

通信领域光电子技术在显示技术方面的应用如液晶显示、有机发光显示等,为现代电子产品提供了丰富多彩的视觉体验。

显示技术光电子技术在太阳能利用、光伏发电等领域的应用,为可再生能源的开发和利用提供了技术支持。

能源领域光电子技术在生物医学领域的应用如光学成像、光动力疗法等,为疾病的诊断和治疗提供了新的手段。

生物医学随着微电子技术的发展,光电子器件将越来越微型化、集成化,实现更高的性能和更小的体积。

微型化与集成化人工智能和自动化技术的引入将进一步提高光电子系统的智能化水平,实现更高效的运行和管理。

智能化与自动化环保意识的提高将推动光电子技术向更环保的方向发展,如开发低能耗、无污染的光电子器件和系统等。

绿色环保光电子技术与材料科学、生物医学等学科的融合将产生更多的交叉学科和创新应用。

跨学科融合光源与光辐射02CATALOGUE利用物体加热到高温后产生的热辐射发光,如白炽灯、卤钨灯等。

具有连续光谱、色温低、显色性好等特点。

热辐射光源利用气体放电时产生的可见光辐射发光,如荧光灯、高压汞灯等。

具有高效、节能、长寿命等优点。

气体放电光源利用固体发光材料在电场或光场激发下产生的发光现象,如LED 、OLED 等。

具有节能环保、响应速度快、可调控性强等特点。

固体发光光源光源的种类与特性表示光源发出的总光能量,单位是流明(lm )。

光电子技术(声光调制和声光偏转)

光电子技术(声光调制和声光偏转)

声光偏转器的性能指标及评价方法
性能指标
声光偏转器的主要性能指标包括衍射效率、偏转角度、工作频率范围、响应时间等。其中,衍射效率 反映了声光相互作用的强弱,偏转角度决定了光波偏转的程度,工作频率范围和响应时间则关系到器 件的适用性和动态性能。
评价方法
通常采用实验测量的方法对声光偏转器的性能指标进行评价。例如,可以通过测量不同频率和声强下 的衍射效率和偏转角度,绘制出器件的频率响应曲线和偏转特性曲线,以全面评估器件的性能。
THANKS FOR WATCHING
感谢您的观看
声光偏转是利用声波在介质中传播时 引起的折射率梯度,使光束发生偏转 的现象。声光偏转器通常由压电晶体 和棱镜组成,当压电晶体受到声波作 用时,其折射率会发生变化,使得通 过棱镜的光束发生偏转。
声光调制和声光偏转 的应用
声光调制和声光偏转在光通信、激光 雷达、光学测量等领域具有广泛的应 用。例如,在光通信中,声光调制器 可用于实现高速光信号的调制和解调 ;在激光雷达中,声光偏转器可用于 实现光束的快速扫描和定位;在光学 测量中,声光调制和声光偏转可用于 实现高精度的光学干涉和衍射测量。
02 声光调制技术
声光调制器的基本结构和工作原理
基本结构
声光调制器主要由声光介质、压电换能器、吸声(或反射)装置及驱动电源等组 成。
工作原理
声光调制器是利用声光效应将信息加载于光频载波上的一种物理器件。当特定频 率的声波作用于声光介质时,会引起介质折射率的变化,从而使通过介质的光波 参数(如振幅、频率、相位等)随之发生变化,实现对光波的调制。
于制作光电探测器。
非线性光学材料
具有非线性光学效应的材料, 如磷酸二氢钾、铌酸锂等,用 于制作光调制器和光开关等。

光电子技术的研发和应用

光电子技术的研发和应用

光电子技术的研发和应用光电子技术是指利用光和电子的相互作用,完成信息的采集、处理和传输的一类技术。

它广泛应用于通信、能源和医疗等领域,尤其随着信息技术的发展,光电子技术已成为其中不可或缺的组成部分,引领着未来技术的发展方向。

一、光电子技术的研发1. 光电子基础材料研究光电子技术的研发离不开光电子基础材料的研究。

光电子基础材料是指在光电子器件中用来感光、发光和控制电信号等作用的材料。

目前比较常见的光电子基础材料有硅、氮化硅、氮化铝、碳化硅等。

这些材料的研究关键在于提高其性能,如增强光电转换效率、提高载流子运动速度、提高材料的制备纯度等。

2. 光电子器件研制光电子器件是光电子技术的核心部分,它包括光电转换器、光电控制器、光纤通信器件等。

在光电子器件的研制过程中,需要对器件的结构、材料、工艺等进行细致的研究和优化,以提高器件的性能和可靠性。

同时,还需要对器件进行严格的测试和鉴定,确保其符合相应的标准和规范。

3. 光电子系统集成光电子系统集成是指将多种光电子器件集成在一起,形成一个完整的光电子系统。

在光电子系统集成过程中,需要考虑多个因素,如能源消耗、数据传输速率、系统复杂度等。

同时,还需要充分考虑光电子器件的相互协作和兼容性等问题,确保整个系统的各项指标均达到预期水平。

二、光电子技术的应用1. 光通信光通信是指利用光波进行数据传输的通信方式。

相比传统的电信方式,光通信具有传输速率快、抗干扰性强、能量消耗低等优点。

目前,光通信技术已广泛应用于互联网、电视传输、电话系统等领域,成为现代通信领域的主要技术之一。

2. 光存储光存储指利用光和材料相互作用,将信息以光的形式存储的技术。

光存储技术具有存储密度高、读写速度快、抗磁场干扰等优点,已广泛应用于CD、DVD等数字媒体存储领域。

3. 光伏发电光伏发电是指利用光的能量,转换成电能的一种发电方式。

光伏电池是光伏发电技术的核心部分,它利用半导体材料的光电转换效应,将光转化为电能。

光电子技术及其应用

光电子技术及其应用

光电子技术及其应用近年来,光电子技术在各领域中得到了广泛应用和发展,由此带来了许多新的科技成果。

光电子技术可以简单地理解成是把光学和电子学相结合的一种技术,它包括光、电、磁等多种物理信息的传输与处理,以及光电敏器件、光电传感器、光电控制器等各种设备和系统的研发。

本文将主要探讨光电子技术的原理、特点及其应用。

一、光电子技术的原理光电子技术最基本的原理就在于将光信号转换成电信号,再通过电信号的处理来达到处理和分析光信息的目的。

这里有两个关键部分:光电转化和电信号处理。

光电转化的过程中要用到光敏材料或者器件,比如光敏二极管、光敏传感器等。

它们会将光信号转变成电流或电压信号,接着通过电信号处理系统将其转换成有用的信息。

二、光电子技术的特点1. 光量巨大作为一种基于光的技术,光电子技术的特点就在于它与光的关系密不可分。

光的传输和处理速度极快,并且光能量的密度非常大,有超出电信号范畴的巨大量级。

其次,光信号可以穿透和透过物质,这更是电子信号无法比拟的优势。

相对于其他传统的技术手段,光电子技术可以在更广泛的同时,也达到更高的精度。

2. 适应性强光电子技术可以根据具体情况选择不同的器件和材料,以便应用于不同领域。

这也使得它能够适应各种不同的环境和条件,并在具体应用中发挥其独特的优越性。

比如说,在高精度的测量、成像、检测以及其他类似领域中,光电子技术的应用效果已经得到了广泛的认可。

3. 可扩展性强不仅如此,光电子技术还能够将其特性的优势轻松扩展到新应用领域。

由于其强大的适应性和高效处理能力,在机器视觉、光学通讯等领域也得到了广泛的应用。

而且,随着人工智能等技术的发展,光电子技术还将有更广的应用前景。

三、光电子技术的应用1. 光电传感技术光电传感技术的核心在于用光学方法探测各种应力和应变,从而描述物理、化学物质和环境中的现象。

光电传感技术在许多行业领域中都得到了应用,如人体健康监测、生物医药、环境监测、汽车行业等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2谈谈对光电子技术的理解:光电子技术主要研究物质中的电子相互作用及能量相互转换的技术,以光源激光化,传输波导化,手段电子化,现在电子学中的理论模式和电子学处理方法光学化为特征,是一门新的综合性交叉学科。

3.光电子技术应用实例:光纤通信、光盘存储、光电显示器、光纤传感器等。

4.光的基本属性是光具有波粒二象性,光波动性的体现是光具有干涉、衍射、偏振等。

5.两束光相干的条件是频率相同、振幅方向相同、相位差恒定。

最典型的干涉装置有杨氏双缝干涉、迈克耳孙干涉仪。

两束光相长干涉的条件是δ=mλ(m = 0,±1,±2,LL)6.最早的电光源是碳弧光灯,最早的激光器是1960年美国梅曼制作的红宝石激光器。

7光在各向同性介质中传播时,复极化率的实部表示色散和频率的关系,虚部表示物质吸收和频率的关系。

8波长λ的光经过孔径D的小孔在焦距f 处的衍射爱里斑半径为1.22 fλ/D 。

9光调制技术——光信息系统的信号加载与控制10光有源器件是光通信系统中将电信号转换成光信号或将光信号转换成电信号的关键器件,是光传输系统的心脏。

光无源器件是指没有光电转换的器件,即只有光-光的转换。

11.光谱线展宽,均匀展宽:原子自发辐射产生的谱线并不是单一频率的,而是占据一定的频谱宽度,若果这种频谱展宽是由于手激态的有限寿命引起的,则称之为均匀展宽。

特点:引起机制对于每一粒子而言都相同。

任一粒子对谱线展宽的贡献一样,每个发光粒子都以洛伦兹线型发射.非均匀展宽:在物理现象中,个别原子是可以区分的,每一个原子的跃迁频率ν都有少量差别,从而导致自发发射频谱反映出各个跃迁频率增宽,称之为。

特点:粒子体系中粒子的发光只对谱线内与其中心频率相对应的部分有贡献12 激光器的基本结构包括:激光工作物质、泵浦源和光学调振腔。

13激光产生的充分条件是阈值条件和增益饱和效应,必要条件是粒子束反转分布和减少振荡模式数。

14光波导:能使光低损耗传输的通道,它将光限制在一定路径中向前传播,减少了光的耗散,便于光的调制、耦合等,为光学系统的固体化、小型化、集成化打下了基础。

15.受激辐射:当原子处于激发态E2时,如果恰好有能量(这里E2 )E1)的光子射来,在入射光子的影响下,原子会发出一个同样的光子而跃迂到低能级E1上去,这种辐射叫做受激辐射。

谱线的多普勒加宽:由于气体物质中作热运动的发光粒子所产生的辐射的多普勒平移引起的。

谱线的自然加宽:自然加宽是由于粒子存在固有的自发跃迁,从而导致它在受激能级上寿命有限所形成的。

光放大;指在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光纤放大器除外),然后通过受激辐射实现对入射光的放大。

16.激光的特点:有四1.激光具有极好的方向性;2.单色性好;3相干性好;4.具有极高的亮度和单色亮度。

信息光电技术中所用到的激光着重单色性、高速脉冲性、方向性、可调谐性和高能量密度等。

17.为什么二能级系统不产生激光:当外界激励能量作用于二级体系物质时,首先建立自发辐射,在体系中有了初始光辐射之后,一方面物质吸收光,使N1减少,N2增加;另一方面由于物质中存在辐射过程,使N2减少,N1增加,两种过程同时存在,最终达到N1=N2状态,光吸收和辐射相等,二能级系统不再吸收光,达到所谓的字发射状态,这种状态下N1不再继续增加;即便采用强光照射,共振吸收和受激发射以相同的概率发生,也不能实现粒子束反转。

18.分析四能级与三能级激光器相比具有的优点:四能级系统能级结构如图所示,由于E4到E3、E2到E1的无辐射跃迁概率很大,而E3到E2、E3到E1的自发跃迁概率都很小。

这样,外界激发使E1上的粒子不断被抽送到E4,又很快转到亚稳态E3,而E2留不住粒子,因而E2和E3都很容易形成粒子束反转,产生受激辐射,四能级结构使粒子束反转很容易实现,激光阈值很低。

19.以一个三能级原子系统为例,说明激光器的基本组成和产生激光的基本原理。

激光器的基本结构包括激光工作物质、泵浦源、和光学谐振腔。

激光工作物质提供形成激光的能级结构体系,是激光产生的内因。

要产生激光,工作物质只有高能态(激发态)和低能态(基态)是不够的,还至少需要有这样一个能级,它可以使得粒子在该能级上具有较长得停留时间或较小得自发辐射概率,从而实现其与低能级之间得粒子数反转分布,这样得能级称为亚稳态能级。

这样,激光工作物质应至少具备三个能级。

其中E1 是基态,E2 是亚稳态,E3 是激发态。

外界激发作用使粒子从E1 能级跃迁到E3 能级。

由于E3 的寿命很短,因而不允许粒子停留,跃迁到E3 的粒子很快通过非辐射迟豫过程跃迁到E2 能级。

由于E2 能级是亚稳态,寿命较长,因而允许粒子停留。

于是,随着E1 的粒子不断被抽运到E3,又很快转到E2,因而粒子在E2 能级上大量积聚起来,当把一半以上的粒子抽运到E2,就实现了粒子数反转分布,此时若有光子能量为hυ=E2-E1 的入射光,则将产生光的受激辐射,发射hυ的光,从而实现光放大。

泵浦源提供形成激光的能量激励,是激光形成的外因。

20. 分别简述几种常见的激光锁模实现方法。

实现锁模的方法有很多,大致分为一下几类:1.主动锁模,是一种内调制锁模,通过在腔内插入一个电光或声光调制起实现模式锁定,要求调制频率精确地等于激光器的纵模间隔,从而使所有参与振荡的模式相位同步的锁模技术。

⒉被动锁模,类似染料被动开关,把很薄的可饱和吸收染料盒插入自由运转的环形腔结构激光器谐振腔环路中点,使相反方向的两个脉冲精确同步地到达吸收体,发生碰撞,产生相干叠加效应,从而获得有效锁模的碰撞锁模方式。

⒊自锁模,这是一种通过增益调制来实现锁模的方法。

用一台锁模激光器的序列脉冲输出泵浦另一台激光器,在两个激光器光腔长度相等的情况下,激光器的增益收到调制,在最大增益时形成一个脉冲更窄的序列脉冲输出,这就是自锁模技术,或称同步锁模技术。

21. 激光选模技术分哪几类?采取某些手段限制参与振荡的模式数目,有关技术称为激光选模技术,一般分为四类:一是激光谱线选择,二是激光偏振选择,第三类时压缩振荡激光束的发散角、从而改善其方向性的横模选择技术,第四类是用于限制振荡激光频数目的纵模选择技术。

22. 光纤的基本结构是什么?单独的纤芯可否作为光波导?包层的作用是什么?光纤传输光的基本原理是什么?什么是传输模、辐射模和消逝模?光纤由传导光的纤芯(折射率)和外层的包层(折射率)两同心圆形的双层结构组成,且n1>n2。

外面再包以一次涂覆护套和二次涂覆护套。

单独的纤芯不能作为光波导,光波导由纤芯和包层共同组成。

包层对纤芯起保护作用,包括增加光纤的机械强度,避免纤芯接触到污染物,以及减少纤芯表面上由于过大的不连续性(即界面两边的折射率差别过大)而引起的散射损耗率。

光波在光纤中传播有3 种模式,导模(传输模),漏模(泄漏模)和辐射模。

导模是光功率限制在纤芯内传播的光波场,又称芯模。

其存在条件是 n 2k < β < n1k.芯内电磁场按振荡形式分布,为驻波场或传播场,在包层内场的分布按指数函数衰减,为衰减场,模场的能量被闭锁在纤芯内沿轴线Z 方向传播。

漏模是在纤芯及距纤壁一定距离的包层中传播的光波长,又称包层模。

其存在条件是n 2k0 = β。

辐射模在纤芯和包层中均为传输场,其存在条件是β< n2k0。

在此条件下,波导完全处于介质状态,光波在纤芯与包层的界面上因不满足全反射条件而产生折射,模场能量向包层逸出,光纤失去对光波场功率的限制作用。

23. 试简单分析光纤通信与其他通信方式相比的优点和特点,并分析玻璃光纤的色散与吸收损耗,说明光纤通信使用的波长范围和使用的光源。

光纤通信的光源具有比通常通讯用无线电波高得多的频率,因而能传递的信息容量是无线电波的10^4倍;相干性好,因而易于信息加载;方向性强、发散角小,因而能传输较远的距离。

光波导与光纤的损耗不断减小,为光信息传输提供了优良的传输介质,光传输还有易于保密、传输速度快等许多优点。

光纤损耗分为吸收损耗,散射损耗和辐射损耗。

吸收损耗当光波通过任何透明物质时,都要使组成这种物质的分子中不同振动状态之间和电子的能级之间发生跃迁。

在发生这种能级跃迁时,物质吸收入射光的能量(其中一部分转换成热能储存在物质内)引起光的损耗。

包括本征吸收损耗、杂质吸收损耗和原子缺陷损耗3 种。

24.光外调制典型方式:光外调制是在激光谐振腔以外的光路上放置调制器,将待传输的信号加载到调制器上,于是,当激光通过这种调制器时,激光的强度、位相、频率等将发生变化,从而实现调制。

激光外调制可分为体调制和光波导调制两类。

体调制器的体积交大,所需调制电压和消耗的调制功率都较大;光波导调制器则是制作在薄膜光波导或条形光波导上,因而体积小巧、驱动电压低、功耗小。

外调制的基础是外场作用下光与物质的相互作用,其共同物理本质都是外场微扰引起材料的非线性变化,并导致光学各向异性。

这种非线性相互作用过程使得通过的光波强度、偏振方向、频率、传播方向、位相等参量发生变化,从而实现了激光的调制。

25.双折射现象?如何确定单轴与双轴晶体的光轴?所谓双折射现象是指光在各向异性介电晶体中传播时,分为两束偏折方向不同的光,向两个方向折射。

确定晶体的光轴可由波氏面确定,波氏面由两层曲面组成。

两层曲面通常有四个公共点,通过原点和这些公共点连线方向传播的两个波有相同的相速度,这些方向就是光轴的方向。

26. 简述电光衍射与声光衍射发生的物理机制/通常我们认为一个材料的介电常量与外场无关,为恒值,但理论和试验均证明,介电常量是随电场强度而变化的,只不过一般情况下外加电场较弱,我们可以作弱场近似,认为介电常量与电场强度无关;但当光介质的两端所加外加电场较强时,介质内的电子分布状态将发生变化,以致介质的极化强度以及折射率也各向异性地发生变化。

此外,这种效应迟豫时间很短,仅有10−11s 量级,外加电场地施加或撤销导致地折射变化或恢复瞬间即可完成。

///声波的应变场也能改变某些类型晶体地折射率,由于声波的周期性,会引起折射率的周期性变化,产生类似于光栅的光学结构,超声波引起晶体的应变场,使射入晶体中的光波被这种弹性波衍射.27.声光调制,类型,判据声波的应变场也能改变某些类型晶体地折射率,由于声波的周期性,会引起折射率的周期性变化,产生类似于光栅的光学结构,从而对入射的光波产生调制,这种调制称为声光调制。

按照超声波频率的高低和光波相对声场的入射角度及两者相互作用的长度,将声光衍射分为拉曼-奈斯衍射和布拉格衍射两类。

拉曼-奈斯衍射与布拉格衍射的判断依据用声光相互作用特征长度来Lo表示Lo=A^2/y; 拉曼-奈斯衍射:L<=0.5Lo;布拉格衍射:L>=2Lo; 过渡区0.5Lo ≤ L ≤ 2Lo。

相关文档
最新文档