实验设计与数据处理(第二版部分答案)

合集下载

最新试验设计与数据处理课后答案

最新试验设计与数据处理课后答案

试验设计与数据处理》第三章:统计推断3- 13解:取假设HO : u1-u2w 0和假设H1: u1-u2 > 0用sas 分析结果如下:Sample StatisticsGroupNMeanStd. Dev.Std. Errorx8 0.231875 0.0146 0.0051 y100.20970.00970.0031Hypothesis TestNull hypothesis:Mean 1 - Mean 2 = 0Alternative:Mean 1 - Mean 2 A= 0If Varianees Aret statistie DfPr > tEqual3.878 16 0.0013 Not Equal3.70411.670.0032由此可见p 值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中 由 3 个字母组成的词的比例均值差异显著。

3-14解:用sas 分析如下: Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1 Alternative:Varia nee 1 / Varia nee 2 A = 1- Degrees of Freedom -FNumer. Denom.Pr > F第四章:方差分析和协方差分析4- 1 解:Sas 分析结果如下:Dependent Variable: ySum ofSouree DF Squares Mean Square F Value Pr > F Model 41480.823000370.20575040.88<.00012.27 7 由p 值为0.2501 > 0.05 (显著性水平) 9 0.2501,所以接受原假设, 两方差无显著差异Source DF Type I SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n627.000000004.500000000.830.5684Source DF Type III SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n 627.000000004.500000000.830.5684由结果可知, 在不同浓度下得率有显著差异, 在不同温度下得率差异不明显, 交 互作用的效应不显著。

实验设计与数据处理第二部分资料讲解

实验设计与数据处理第二部分资料讲解
SA=5(71.4 - 75.7)2 + 5(80.0 – 75.7)2 =184.90
可以看出,此处有
ST= SA + Se= 184.90 + 1109.20 =1294.10
即总的偏差平方和可以分解为组间偏差平方和与组内偏差平
方和。
有了SA和Se之后,是否就能直接比较出由于因素水平的变化引 起的数据波动与实验误差引起的数据波动之间的差异呢?
例 3.1 考察生产某化工产品时反应温度A(℃)对收率y(%)的影响。 为此,比较两个反应温度A1=30℃,A2=40℃。
表 3.1 某化工产品收率实验数据表
实验号 水平
1
2
3
4
5 平均值
A1(30℃) 75 78 60 61 83 71.4
A2(40℃) 89 62 93 71 85 80.0
条件误差:由于实验条件的不同而引起的差异叫“条件误 差”。
3.2 方差分析的概述
方 差 分 析 (Analysis of Variance) 由 英 国 统 计 学 家 R.A.Fisher 首 创 , 为 纪 念 Fisher,以F命名,故方差分 析又称 F 检验。
方差分析能把实验过程中实验条件改变所引起的数据波动 与实验误差引起的数据波动区分开,同时对影响实验结果 的各因素的重要程度给以精确的数量估计。
F多大时,可以说因素的水平改变对考察指标的影响是显著的 呢?小到多小,认为实验结果的误差主要是实验误差引起的, 这就需要有一个标准。这个标准由F表给出。
在F表上,横行n1代表F值中分子的自由度,竖行n2代表F值 中分母的自由度,相交后的数值即为F比的临界值。
本例中,因
F 18.940/11.33 110.290/8

试验设计与数据处理(第二版)课后习题答案

试验设计与数据处理(第二版)课后习题答案
行 列 误差
总计
SS 537.6375
35.473 75.155
648.2655
df
MS
F P-value F crit
3 179.2125 28.61486 9.44E-06 3.490295
4 8.86825 1.415994 0.287422 3.259167
12 6.262917
19
3.3
铝材材质 去离子水
5
23
21
22
比例/%
比例/%
22
18
21
23
橡胶工业
合成表面活性剂
11
润滑油(脂)
肥皂及洗涤剂
5
金属皂
其他
3.1
第三章习题答案 3.1
颜色 橘黄色 粉色 绿色 无色
方差分 析:单因 素方差分 析
SUMMARY 组
行1 行2 行3 行4
26.5 31.2 27.9 30.8
销售额/万元 28.7 25.1 28.3 30.8 25.1 28.5 29.6 32.4
方差分析
差异源 样本 列 交互 内部
SS 4.371666667
50.43 2.355 0.42
总计
57.57666667
df
MS
F P-value F crit
2 2.185833 31.22619 0.000673 5.143253
1 50.43 720.4286 1.77E-07 5.987378
4.4
试验号 T/℃ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Na2O(x1) siO2(x2) CaO(x3)/

实验设计与数据处理课后答案

实验设计与数据处理课后答案

《试验设计与数据处理》专业:机械工程班级:机械11级专硕学号:S110805035 姓名:赵龙第三章:统计推断3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。

3-14 解:用sas分析如下:Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1Alternative: Variance 1 / Variance 2 ^= 1- Degrees of Freedom -F Numer. Denom. Pr > F----------------------------------------------2.27 7 9 0.2501由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异第四章:方差分析和协方差分析4-1 解:Sas分析结果如下:Dependent Variable: ySum ofSource DF Squares Mean Square F Value Pr > FModel 4 1480.823000 370.205750 40.88 <.0001Error 15 135.822500 9.054833Corrected Total 19 1616.645500R-Square Coeff Var Root MSE y Mean0.915985 13.12023 3.009125 22.93500Source DF Anova SS Mean Square F Value Pr > Fc 4 1480.823000 370.205750 40.88 <.0001由结果可知,p值小于0.001,故可认为在水平a=0.05下,这些百分比的均值有显著差异。

实验设计与数据处理第三四五章例题及课后习题答案

实验设计与数据处理第三四五章例题及课后习题答案
SSt SSr Sse
x3 13 19 25 10 16 22 28 133 19
y 1.5 0.33
3 0.336 1 0.294 2.5 0.476 0.5 0.209 2 0.451 3.5 0.482 14 2.578 2 0.368286
方程 1 1E-06 2 1E-06 3 2.32E-09 4 7.24E-11
0
系列1
5
10
15
0
SUMMARY OUTPUT
5
10
x
回归统计
Multiple
R
0.981636002
R Square
0.96360924
Adjusted
R Square 0.951478987
标准误差 0.643254553
观测值
9
方差分析
回归分析 残差 总计
df
SS
2 65.7395637
6 2.482658518
例4-5
试验号 x1 1 2 3 4 5 6 7
总和 平均
L11 L22 L33 L12 L23 L31
x2 1 1.4 1.8 2.2 2.6 3 3.4 15.4 2.2
4.48 252
7 16.8 10.5 1.4
L1y L2y L3y
检验线性 回归方程 的显著性 (1)F检 验
0.2404 0.564 0.5245
8 68.22222222
15
F0.01(2,6 )=10.92
MS
F
32.86978185 79.43851
0.41377642
Intercep t X Variable 1 X Variable 2

实验设计与数据处理(第二版部分答案)教学内容

实验设计与数据处理(第二版部分答案)教学内容

实验设计与数据处理(第二版部分答案)试验设计与数据处理学院班级学号学生姓名指导老师第一章4、相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:18.2±0.0182mg 。

5、1)、压力表的精度为1.5级,量程为0.2MPa ,则 max 0.2 1.5%0.003330.3758R x MPa KPax E x ∆=⨯==∆=== 2)、1mm 的汞柱代表的大气压为0.133KPa , 所以max 20.1330.1331.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667总体方差σ20.001780556算术平均误差△ 0.038333333 极差R 0.117、S ₁²=3.733,S ₂²=2.303F =S ₁²/ S ₂²=3.733/2.303=1.62123而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。

分析人员A分析人员B8 7.5 样本方差1 3.733333 8 7.5 样本方差2 2.302778 10 4.5 Fa 值 0.248386 4.025994104F 值1.62123|||69.947|7.747 6.06p pd x =-=>6 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 df 12 8 F 0.000185422P(F<=f) 单尾0F 单尾临界0.3510539349. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。

实验与数据处理习题及解答.docx

实验与数据处理习题及解答.docx

1.在^xcel中用AVERAGE函数计算平均值,用STEDV函数计算标准偏差,得到结果如表1所示。

表1该污水厂进、出水水质标准偏差及平均值COD SS 氨氮进水出水进水出水进水出水标准偏差102.70497 5.6417987 40.44311 2.2590321 7.7226061 1.1480863 平均值368.39 42.05 243.39 16.65 33.77 1.85图1该污水厂进、出水水质示意图2.在excel中作图如下:(1)加药量(mg/L)加药量(mg/L)图6加药量与浊度去除率、总磷去除率、总氮去除率、COD 去除率的关系图3. (1)图2总磷随加药质的变化关系图 图3余浊随加药质的变化关系图5075 100125150加药量(mg/L)5075100125150加药量(mg/L)图4总氮随加药■的变化关系图 图5 COD 随加药■的变化关系图(8)瓣泰2 0164 2108 6 4 (T/SUONH50 49 485756554 3 2 155 5 5 (q/SUIQooo o Oo o o o O图7进水量Q 与SVI 关系图10.015.020.025.030.035.0水温(笆)图8水温与SVI 关系图0.0010.00 20.00 30.00 40.00 50.00 60.00 70.00SV30 (%)图9 SV30与SVI 关系图0.00 20.0025.00 45.00 2(10(1HUM Hloo O oo O O.O.O. 8 6 430.0035.00 40.00 进水流量Q (万m3/d)50.00II)2((T /SUI0.002.004.006.00 8.0010.0012.00MLSS (g/L)图10 MLSS 与SVI 关系图(2) 用excel 中correl 函数求出相关系数r,再根据0V|rl<l,存在一定线性关系:①0 VlrlVO.3,微弱相关;②0.3VIHV0.5,低度相关;③0.5<lrl<0.8,显著相关;④0.8 <lrlVl,高度相关。

试验设计与数据处理 第二版 第6章 正交试验设计

试验设计与数据处理 第二版 第6章 正交试验设计

按照规定的方案完成每一号试验 试验次序可随机决定 试验条件要严格控制
(5)计算极差,确定因素的主次顺序

三个符号: Ki:表示任一列上水平号为 i 时,所对应的试验结果之和。 ki :ki= Ki/s,其中s为任一列上各水平出现的次数 R(极差):在任一列上
R=max{K1 ,K2 ,K3}-min{K1 ,K2 ,K3},
上一张 下一张 主 页 退 出
图6-3
上一张 下一张 主 页
退 出
正交设计就是从选优区全面试验点(水 平组合)中挑选出有代表性的部分试验点(水
平组合)来进行试验。图6-3中标有试验号的九
个“(·)”,就是利用正交表 L9(34) 从 27 个试
验点中挑选出来的9个试验点。即:
(1)A1B1C1 (2)A2B1C2 (3)A3B1C3
图6-3
3 因 素 3 水 平 的 全 面试验水平组合数为 33=27,4 因素3水平的全面试验水平组合数为34=81 , 5因素3水平的全面试验水平组合数为35=243,这在科 学试验中是有可能做不到的。
上一张 下一张 主 页 退 出
表10-1
上一张 下一张 主 页
退 出
图6-1 全面实验 实验点分布
试验目的与要求
试验方案设计:
试验指标
选因素、定水平 因素、水平确定 选择合适正交表 表头设计 列试验方案 试验结果分析
验证试验
试验结果分析:
进行试验,记录试验结果
试验结果极差分析
试验结果方差分析
绘 制 因 素 指 标 趋 势 图
计 算 K 值
计 算 k 值
计 算 极 差 R
计算各列偏差平方和、 自由度 列方差分析表, 进行F 检验 分析检验结果, 写出结论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验设计与数据处理
学院
班级
学号
学生
指导老师
第一章 4、 相
故100g 中维生素C 的质量围为:。

5、1)、压力表的精度为1.5级,量程为0.2MPa ,

2)、1mm 的汞柱代表的大气压为0.133KPa , 所以
3)、
1mm 则:
6.
样本测定值
3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2
0.002136667
总体方差σ2
0.001780556
|||69.947|7.747 6.06
d x =-=>
算术平均误差△0.038333333
极差R 0.11
7、S₁²=3.733,S₂²=2.303
F=S₁²/S₂²=3.733/2.303=1.62123
而F 0.975(9.9)=0.248386,F0.025(9.9)=4.025994
所以F 0.975(9.9)< F <F0.025(9.9)
两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。

分析人员A 分析人员B
8 7.5 样本方差1 3.733333
8 7.5 样本方差2 2.302778
10 4.5 Fa值0.248386 4.025994
10 4 F值 1.62123
6 5.5
6 8
4 705
6 7.5
6 5.5
8 8
8.旧工艺新工艺
2.69% 2.62%
2.28% 2.25%
2.57% 2.06%
2.30% 2.35%
2.23% 2.43%
2.42% 2.19%
2.61% 2.06%
2.64% 2.32%
2.72% 2.34%
3.02%
2.45%
2.95%
2.51%
t-检验: 双样本异方差假设
变量1 变量2
平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 假设平均差0
df 8
t Stat -38.22288611
P(T<=t) 单尾0
t 单尾临界 1.859548033
P(T<=t) 双尾0
t 双尾临界 2.306004133
F-检验双样本方差分析
变量1 变量2
平均0.025684615 2.291111111
方差0.000005861 0.031611111
观测值13 9
df 12 8
F 0.000185422
P(F<=f) 单尾0
F 单尾临界0.351053934
9.检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。

求出各数据的秩,如下表所示:
1 2 3 4 5 6 7 8
0.73 0.77 0.79
0.74 0.75 0.76 0.79 0.8
10 11 12 13 14 15 16 17 0.84 0.85 0.87 0.91 0.83
0.86
0.92
0.96
此时
对于 α =0.05,查临界值表得:T1=66,T2=102。

则 T 1,<R 1<T 2 ,故新方法与旧方法的数据无显著性差异
即新方法与旧方法的数据无显著差异,即新方法无系统误差。

10.格拉布斯检验法: (1)、检验62.2
计算包括62.2在的平均值为69.947,即标准差2.7853,查表得
所以 则 ,故62.2这个值应被剔除。

(2)、检验69.49 用同样的方法检验得,应被剔除。

(3)、检验70.3 70.3不应被剔除。

第二章 1.
(0.05,10) 2.176G =(0.05,10) 6.06G s =|||69.947|7.747 6.06p p d x =-=>12129,9,18
15 6.59111214151891.579.5
n n n R R ====++++++++==
2.
3.
4.
5.
6.
8.
第三章
1.颜色销售额/万元
橘黄色26.5 28.7 25.1 29.1 27.2 粉色31.2 28.3 30.8 27.9 29.6 绿色27.9 25.1 28.5 24.2 26.5 无色30.8 29.6 32.4 31.7 32.8
方差分析:单因素方差分析
SUMMARY
组观测数求和平均方差
26.5 3 89.9 29.96667 3.243333
28.7 3 83 27.66667 5.363333
25.1 3 91.7 30.56667 3.843333
29.1 3 83.8 27.93333 14.06333
27.2 3 88.9 29.63333 9.923333
方差分析
差异源SS df MS F P-value F crit 组间19.764 4 4.941 0.678026 0.622585 3.47805 组72.87333 10 7.287333
总计92.63733 14
2.乙炔流量/(L/min)
空气流量/(L/min)
8 9 10 11 12 1 81.1 81.5 80.3 80 77
1.5 81.4 81.8 79.4 79.1 75.9
2 75 76.1 75.4 75.4 70.8
2.5 60.4 67.9 68.7 69.8 68.7 方差分析:无重复双因素分析
SUMMARY
观测

求和平均方差
5 50 10 2.5
1 5 399.9 79.98 3.137
1.5 5 397.6 79.52 5.507
2 5 372.7 74.54 4.528
2.5 5 335.5 67.1 14.485
空气流量/(L/min) 5 305.9 61.18 956.342
5 316.3 63.2
6 951.743
5 313.8 62.7
6 890.803
5 315.3 63.0
6 863.048
5 304.4 60.88 758.567
方差分析
差异源SS df MS F P-value F crit 行17586.16 4 4396.541 733.9066 6.68E-18 3.006917 列24.7784 4 6.1946 1.034053 0.420032 3.006917 误差95.8496 16 5.9906
总计17706.79 24
3.铝材材质去离子水自来水
1 2.3 5.6
1 1.8 5.3
2 1.5 5.3
2 1.5 4.8
3 1.8 7.4
3 2.3 7.4
方差分析:可重复双因素分析
SUMMARY 去离子水自来水总计
1
观测数 2 2 4 求和 4.1 10.9 15 平均 2.05 5.45 3.75 方差0.125 0.045 3.91 2
观测数 2 2 4 求和 3 10.1 13.1 平均 1.5 5.05 3.275 方差0 0.125 4.2425 3
观测数 2 2 4 求和 4.1 14.8 18.9
平均 2.05 7.4 4.725
方差0.125 0 9.5825
总计
观测数 6 6
求和11.2 35.8
平均 1.866667 5.966666667
方差0.130667 1.298666667
方差分析
差异源SS df MS F P-value F crit 样本 4.371667 2 2.185833 31.22619 0.000673 5.143253 列50.43 1 50.43 720.4286 1.77E-07 5.987378 交互 2.355 2 1.1775 16.82143 0.003467 5.143253 部0.42 6 0.07
总计57.57667 11。

相关文档
最新文档