初中数学模型
初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。
E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。
初中数学模型大全及解析

初中数学模型大全及解析数学模型是数学知识在实际问题中的应用,是数学与实际问题结合的一种形式。
在中学阶段,数学模型应用较为广泛。
下面是初中数学模型大全及解析,供大家参考。
1. 等差数列模型等差数列是一组数,其中每一项与它的前一项的差值相等。
在实际问题中,等差数列模型可以用来描述增长、减少、变化等情况。
例题:某学校的学生人数从2015年到2019年的变化情况如下表所示,若学生人数呈等差数列增长,求2019年的学生人数。
| 年份 | 学生人数 ||------|----------|| 2015 | 1000 || 2016 | 1100 || 2017 | 1200 || 2018 | 1300 |解析:设2015年的学生人数为a,每年增加的人数为d,则有: a + 3d = 1200a + 4d = 1300解方程得a=900,d=100,故2019年的学生人数为a+4d=1300人。
2. 利润模型利润是企业经营的重要指标之一,它是指企业销售收入与成本之差。
利润模型可以用来计算企业的销售目标、成本控制等问题。
例题:某工厂生产一种产品,每件售价为100元,生产一件产品的成本为70元。
如果该工厂每月销售量为5000件,求该工厂每月的利润。
解析:每件产品的利润为100-70=30元,每月的销售收入为100×5000=500000元,每月的成本为70×5000=350000元,故该工厂每月的利润为500000-350000=150000元。
3. 百分数模型百分数模型常用于比例问题的解决。
在实际问题中,可以用百分数模型计算增减比例、税率、折扣等。
例题:某商场打折促销,打8折后,一件原价500元的商品现在售价为多少?解析:打8折即为原价的80%,故售价为500×80%=400元。
4. 平均数模型平均数模型可以用来求一组数据的平均值,常用于统计分析中。
例题:某班级10名学生的语文成绩为60、70、80、85、90、88、77、75、79、83,求该班级的平均分。
初中几何48种数学模型系统讲解

初中几何48种数学模型系统讲解初中几何是数学中非常重要的一个分支,涉及到许多基础知识和技能。
在初中几何学习中,数学模型是非常重要的一环,它能够帮助学生更好地理解和掌握几何知识,并提高解题的能力。
下面我们就来介绍一下初中几何中常见的48种数学模型系统。
1. 平面几何模型:平面几何模型是研究平面上的图形和变换的数学模型,例如平移、旋转、对称等。
2. 立体几何模型:立体几何模型是研究空间中的图形和变换的数学模型,例如立体的投影、旋转、平移等。
3. 直线模型:直线模型是用来表示直线的数学模型,例如在平面几何中,可以使用坐标系来表示一条直线。
4. 线段模型:线段模型是用来表示线段的数学模型,例如在平面几何中,可以使用坐标系来表示一条线段。
5. 角度模型:角度模型是用来表示角度的数学模型,例如在平面几何中,可以使用角度制和弧度制来表示角度。
6. 相交模型:相交模型是用来表示图形相交的数学模型,例如在平面几何中,可以使用交点来表示两条直线相交的情况。
7. 平行模型:平行模型是用来表示平行线的数学模型,例如在平面几何中,可以使用平行线的定义来表示两条直线平行的情况。
8. 垂直模型:垂直模型是用来表示垂直线的数学模型,例如在平面几何中,可以使用垂直线的定义来表示两条直线垂直的情况。
9. 对称模型:对称模型是用来表示对称图形的数学模型,例如在平面几何中,可以使用对称轴来表示对称图形的情况。
10. 相似模型:相似模型是用来表示相似图形的数学模型,例如在平面几何中,可以使用相似比例来表示两个相似图形之间的关系。
11. 等比模型:等比模型是用来表示等比数列的数学模型,例如在几何中,可以使用等比数列来表示一些几何问题。
12. 等分模型:等分模型是用来表示等分线段的数学模型,例如在几何中,可以使用等分线段来表示将一个线段分成若干等分的情况。
13. 圆模型:圆模型是用来表示圆形的数学模型,例如在平面几何中,可以使用圆心、半径来表示一个圆。
初中48个数学模型

初中48个数学模型
1. 直线方程模型
2. 一次函数模型
3. 二次函数模型
4. 指数函数模型
5. 对数函数模型
6. 三角函数模型
7. 幂函数模型
8. 反比例函数模型
9. 绝对值函数模型
10. 分段函数模型
11. 等差数列模型
12. 等比数列模型
13. 等差数列求和模型
14. 等差数列通项求值模型
15. 等差数列前n项和求值模型
16. 等差数列前n项平均值模型
17. 等比数列求和模型
18. 等比数列通项求值模型
19. 等比数列前n项和求值模型
20. 等差数列与等差数列之和关系模型
21. 平方根模型
22. 平方根与二次方程关系模型
23. 正方形面积模型
24. 三角形面积模型
25. 平行四边形面积模型
26. 斜率模型
27. 切线斜率模型
28. 余弦定理模型
29. 正弦定理模型
30. 几何相似模型
31. 三角形相似模型
32. 平行线与平行线之间的角关系模型
33. 同位角与内错角模型
34. 相交弦定理模型
35. 角平分线定理模型
36. 体积模型
37. 圆锥体积模型
38. 圆柱体积模型
39. 球体积模型
40. 柱台体积模型
41. 三维图形表面积模型
42. 立体图形展开模型
43. 均值不等式模型
44. 不等式求解模型
45. 组合数学模型
46. 排列数学模型
47. 方程求解模型
48. 实际问题建模模型
以上是初中数学常见的48个数学模型,希望对你有所帮助!。
初中数学196个模型

初中数学196个模型篇一:初中数学是学生学习数学知识的重要阶段,也是培养他们数学思维能力和解决问题能力的关键时期。
在初中数学学习中,掌握数学模型是非常重要的,因为它能帮助学生将抽象的数学概念与现实生活中的问题相联系,使数学知识更加具体和实用。
在初中数学学习中,有许多重要的数学模型,下面将介绍其中的一些。
1. 几何模型:几何模型是初中数学中最基本的模型之一,它涉及到点、线、面、体等几何图形的性质和关系。
学生通过学习几何模型,可以掌握几何图形的特点,如直线的特性、平行线的性质、三角形的分类等,并能够运用几何模型解决实际问题。
2. 等式模型:等式模型是初中代数学习中的核心模型之一,它包括一元一次方程、一元一次不等式、二元一次方程等。
学生通过学习等式模型,可以掌握代数运算的基本规律,如加减乘除的计算,以及解方程、解不等式的方法,从而能够解决与等式相关的实际问题。
3. 概率模型:概率模型是初中数学学习中的一个重要模型,它涉及到随机事件的发生概率和统计推断等内容。
学生通过学习概率模型,可以了解事件发生的可能性,并能够运用概率模型解决与概率相关的实际问题,如掷硬币、抽卡片等。
4. 数列模型:数列模型是初中数学学习中的一个重要模型,它涉及到数列的概念、性质和应用等内容。
学生通过学习数列模型,可以了解数列的规律和特点,如等差数列、等比数列等,并能够运用数列模型解决与数列相关的实际问题,如找规律、预测未知数等。
5. 图形模型:图形模型是初中数学学习中的一个重要模型,它涉及到平面图形的性质和关系等内容。
学生通过学习图形模型,可以了解平面图形的分类、性质和变换等,并能够运用图形模型解决与图形相关的实际问题,如面积计算、图形的相似性等。
总之,初中数学学习中有许多重要的数学模型,通过学习这些模型,学生不仅可以增加对数学知识的理解和掌握,还可以培养数学思维能力和解决问题能力,为将来的学习和生活打下坚实的数学基础。
篇二:初中数学是学习和掌握数学基础知识的重要阶段。
(全)初中数学|23种模型汇总

(全)初中数学|23种模型汇总1. 数列模型数列模型是一组按照特定规律排列的数字,常见的数列有等差数列和等比数列。
在解题中,需要掌握其通项公式和求和公式。
2. 几何模型几何模型是通过图形来表示问题,需要熟练掌握各种几何图形的性质和定理,如圆、三角形、直线等。
3. 等式模型等式模型是通过等式来表示问题,需要掌握化简等式、配方、移项等技巧。
4. 方程模型方程模型是通过方程来表示问题,需要掌握解方程的方法和技巧,如消元法、相似变形法、套公式法等。
5. 数据分析模型数据分析模型需要对给定的数据进行处理和分析,如找出最大值、最小值、平均值等。
6. 概率模型概率模型需要根据事件发生的可能性来计算概率,需要掌握概率的基本原理和计算方法。
8. 百分数模型百分数模型需要将数值转化为百分数进行计算,需要掌握百分数的计算方法和应用。
9. 推理模型推理模型需要根据已知的信息推出未知的结果,需要掌握逻辑思维和推理技巧,如分类讨论法、反证法等。
10. 图表模型图表模型是通过图表来表示问题,需要掌握读图和解决图表问题的技巧。
11. 统计模型统计模型需要对给定的数据进行统计分析,如频数分布、统计量计算等。
12. 函数模型函数模型需要根据函数的定义和性质来计算未知量,需要掌握函数的基本概念和图像变化规律。
13. 同余模型同余模型需要根据同余关系来计算未知量,需要掌握同余关系的基本性质和计算方法,如模运算等。
14. 最优化模型最优化模型需要找出满足特定条件下的最优解,需要掌握最优化方法和技巧,如最大值最小值法、拉格朗日乘数法等。
16. 排列组合模型排列组合模型需要计算不同元素之间的排列和组合方式,需要掌握排列组合的基本概念和计算方法。
17. 质数模型质数模型需要计算满足质数条件的解,需要掌握质数的基本性质和计算方法,如质因数分解等。
23. 递推模型递推模型需要利用递推公式来计算未知项,需要掌握递推公式的推导方法和递推问题的解法。
初中数学九大几何模型

初中数学九大几何模型一、手拉手模型-———旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OAB C DE图 1OABCD E图 2OABCDE图 1OABCDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型——-—旋转型相似 (1)一般情况【条件】:CD ∥AB, 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD; ②延长AC 交BD 于点E,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COABCDEOB CDEOCD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE —OD=2OC;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学30种模型汇总(最全几何知识点)

10.等面积模型:D是BC的中点
20.平移构造全等
30.二次函数中平行四边形存在性模型
01.三线八角
同位角:找F型
内错角:找Z型
同旁内角:找U型
02.拐角模型
一.锯齿型
1
1
3
2
2
3
4
∠1+∠3=∠2
∠1+∠2=∠3 +∠4
左和=右和
二.鹰嘴型
1
1
2
3
3
2
∠1+∠3=∠2
∠1+∠3=∠2
鹰嘴+小=大
一.大小等边三角形
虚线相等,且夹角为60°
(全等,八字形)
四.大小等腰三角形(顶角为α)
结论:虚线相等,且夹角为α
(全等,八字形)
三. 大小等腰直角三角形
结论:虚线相等,且夹角为90°
(全等,八字形)
二.大小正方形
结论:虚线相等,且夹角为90°
(全等,八字形)
15.半角模型
条件:正方形ABCD
∠EDF=45°
证:EF=AE+CF
条件:CD=AD,∠ADC=90°
∠EDF=45°
∠A+∠C=180°
证明:EF=AE+CF
条件:AB=AD
∠B+∠D=180°
∠EAF=1 ∠BAD
2
证明:EF=BE+DF
条件:AB=AC,∠BAC=90°
∠DAE=45°
证明:DE2=BD2+CE2
△CEF为直角三角形
初中数学30种模型汇总
(最全几何知识点)
01.三线八角
02.拐角模型
03.等积变换模型