人教版九年级数学公式法解一元二次方程同步练习
2021--2022学年人教版九年级上册:21.2 解一元二次方程 同步练习 含答案

人教版2021年九年级上册同步练习:21.2 解一元二次方程一.选择题1.下列x的各组取值是方程x2﹣2x=0的根的是()A.x=0或x=2B.x=1或x=2C.x=2或x=3D.x=3或x=4 2.用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为()A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,83.用配方法解x2﹣8x+5=0方程,将其化成(x+a)2=b的形式,则变形正确的是()A.(x+4)2=11B.(x﹣4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 4.用配方法将二次三项式x2+4x﹣96变形,结果正确的是()A.(x+2)2﹣100B.(x﹣2)2﹣100C.(x+2)2﹣92D.(x﹣2)2﹣92 5.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.B.4C.25D.56.已知a,b是实数,定义:a※b=ab+a+b.若m是常数,则关于x的方程:x※(mx)=﹣1,下列说法正确的是()A.方程一定有实数根B.当m取某些值时,方程没有实数根C.方程一定有两个实数根D.方程一定有两个不相等的实数根7.若x1,x2是方程x2=16的两根,则x1+x2的值是()A.16B.8C.4D.08.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad ﹣bc.例如=8×5﹣9×3=40﹣27=13.则方程=﹣9的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根9.若(a2+b2)(a2+b2﹣3)=4,则a2+b2的值为()A.4B.﹣4C.﹣1D.4或﹣110.若m、n是一元二次方程x2+3x﹣9=0的两个根,则m2+4m+n的值是()A.4B.5C.6D.12二.填空题11.方程3x(x﹣1)=6(x﹣1)的根为.12.关于x的一元二次方程3x2﹣kx﹣2=0的一个根是x=1,则这个方程的另一根为.13.将方程3x2﹣6x﹣8=0配方为a(x﹣h)2=k,其结果是.14.一元二次方程x2+2x+2=0的根的判别式的值为.15.设方程x2﹣2021x﹣1=0的两个根分别为x1、x2,则x1+x2﹣x1x2的值是.16.若a,b是方程x2﹣2x﹣5=0的两个实数根,则代数式a2﹣3a﹣b的值是.17.现定义运算“⊗”,对于任意实数a、b,都有a⊗b=a2﹣3a+b;如:3⊗5=32﹣3×3+5,若x⊗2=6,则实数x的值是.三.解答题18.解方程:(1)x2+2x=0.(2).19.解方程:(1)(x+1)2=4;(2)3x(x﹣1)=1.20.解方程(1)2x2+3x﹣3=0;(2)x(2x﹣5)=10﹣4x.21.小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.22.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为x1、x2,且x12+x22=12,求m的值.23.已知关于x的一元二次方程x2﹣6x+2m﹣1=0有x1,x2两实数根.(1)若x1=1,求x2及m的值;(2)是否存在实数m,满足(x1﹣1)(x2﹣1)=?若存在,求出实数m的值;若不存在,请说明理由.24.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:分解因式4a2﹣4a+1=;(2)把x2﹣10x﹣1写成(x+h)2+k后,求出h+k的值;(3)若a、b、c分别是△ABC的三边,且a2+3b2+c2+3=2ab+4b+2c,试判断△ABC的形状,并说明理由.参考答案一.选择题1.解:∵x2﹣2x=0,∴x(x﹣2)=0,则x=0或x﹣2=0,解得x1=0,x2=2,故选:A.2.解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.3.解:∵x2﹣8x=﹣5,∴x2﹣8x+16=﹣5+16,即(x﹣4)2=11,故选:D.4.解:x2+4x﹣96=x2+4x+4﹣4﹣96=(x+2)2﹣100,故选:A.5.解:解方程x2﹣6x+8=0得:x=4和2,即AC=6,BD=2,∵四边形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故选:A.6.解:∵a※b=ab+a+b,∴x※(mx)=x•mx+x+mx=mx2+(m+1)x=﹣1,由mx2+(m+1)x=﹣1得mx2+(m+1)x+1=0,△=b2﹣4ac=(m+1)2﹣4m=(m﹣1)2≥0,∴方程一定有实数根.故选:A.7.解:∵x2=16,∴x1=4,x2=﹣4,则x1+x2=0,故选:D.8.解:∵方程=﹣9,∴x2﹣6x=﹣9,∴x2﹣6x+9=0,∴△=(﹣6)2﹣4×1×9=0,∴方程=﹣9有两个相等的实数根,故选:B.9.解:设y=a2+b2(y≥0),则由原方程得到y(y﹣3)=4.整理,得(y﹣4)(y+1)=0.解得y=4或y=﹣1(舍去).即a2+b2的值为4.故选:A.10.解:∵m、n是一元二次方程x2+3x﹣9=0的两个根,∴m+n=﹣3,mn=﹣9,∵m是x2+3x﹣9=0的一个根,∴m2+3m﹣9=0,∴m2+3m=9,∴m2+4m+n=m2+3m+m+n=9+(m+n)=9﹣3=6.故选:C.二.填空题11.解:原方程变形整理后得:3(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x1=1,x2=2,故答案为:x1=1,x2=2.12.解:设关于x的一元二次方程3x2﹣kx﹣2=0的另一个实数根是x=α,∵关于x的一元二次方程3x2﹣kx﹣2=0的一个根是x=1,∴1×α=﹣,∴α=﹣.故答案为.13.解:3x2﹣6x﹣8=0,∴3(x2﹣2x+1)=8+3,∴3(x﹣1)2=11,故答案为:3(x﹣1)2=11.14.解:∵a=1,b=2,c=2,∴△=22﹣4×1×2=﹣4,故答案为:﹣4.15.解:∵方程x2﹣2021x﹣1=0的两个根分别为x1、x2,∴x1+x2=2021,x1x2=﹣1,∴x1+x2﹣x1x2=2021+1=2022.故答案是:2022.16.解:∵a,b是方程x2﹣2x﹣5=0的两个实数根,∴a+b=2,a2﹣2a﹣5=0,即a2﹣2a=5,∴a2﹣3a﹣b=(a2﹣2a)﹣(a+b)=5﹣2=3.故答案为:3.17.解:由题意可知:x2﹣3x+2=6,∴x2﹣3x﹣4=0,∴(x﹣4)(x+1)=0,∴x=4或x=﹣1.故答案为:4或﹣1.三.解答题18.解:(1)x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2;(2)方程整理为3x2﹣8x﹣2=0,∵Δ=b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=4×22,∴x===,所以x1=,x2=.19.解:(1)方程(x+1)2=4,开方得:x+1=2或x+1=﹣2,解得:x1=1,x2=﹣3;(2)方程整理得:3x2﹣3x﹣1=0,这里a=3,b=﹣3,c=﹣1,∵△=(﹣3)2﹣4×3×(﹣1)=9+12=21>0,∴x==,解得:x1=,x2=.20.解:(1)∵a=2,b=3,c=﹣3,∴△=32﹣4×2×(﹣3)=33>0,则x==,∴x1=,x2=.(2)x(2x﹣5)=10﹣4x,x(2x﹣5)+2(2x﹣5)=0,(2x﹣5)(x+2)=0,∴x1=,x2=﹣2.21.解:小敏:×;小霞:×.正确的解答方法:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x+3)=0.则x﹣3=0或3﹣x+3=0,解得x1=3,x2=6.22.解:(1)根据题意得Δ=(2m)2﹣4(m2+m)≥0,解得m≤0.故m的取值范围是m≤0;(2)根据题意得x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=(x1+x2)2﹣2x1•x2=12,∴(﹣2m)2﹣2(m2+m)=12,即m2﹣m﹣6=0,解得m1=﹣2,m2=3(舍去).故m的值为﹣2.23.解:(1)根据题意得△=(﹣6)2﹣4(2m﹣1)≥0,解得m≤5,x1+x2=6,x1x2=2m﹣1,∵x1=1,∴1+x2=6,x2=2m﹣1,∴x2=5,m=3;(2)存在.∵(x1﹣1)(x2﹣1)=,∴x1x2﹣(x1+x2)+1=,即2m﹣1﹣6=,整理得m2﹣8m+12=0,解得m1=2,m2=6,∵m≤5且m≠5,∴m=2.24.解:(1)4a2﹣4a+1=(2a﹣1)2;故答案为:(2a﹣1)2;(2)x2﹣10x﹣1=x2﹣10x+52﹣52﹣1=(x﹣5)2﹣26∴h=﹣5,k=﹣26,∴h+k=﹣31;(3)△ABC为等边三角形.理由如下:∵a2+3b2+c2+3=2ab+4b+2c,∴a2+3b2+c2﹣2ab﹣4b﹣2c+3=0,∴a2﹣2ab+b2+2b2﹣4b+2+c2﹣2c+1=0,∴(a﹣b)2+2(b﹣1)2+(c﹣1)2=0,∴a﹣b=0,b﹣1=0,c﹣1=0,即a=b=c=1,∴△ABC为等边三角形.。
人教版初中九年级上册数学小专题(一)《一元二次方程的解法》同步练习

专题(一) 一元二次方程的解法1.用直接开平方法解下列方程:(1)x2-16=0;(2)3x2-27=0;(3)(x-2)2=9;(4)(2y-3)2=16.2.用配方法解下列方程:(1)x2-4x-1=0;(2)2x2-4x-8=0;(3)3x2-6x+4=0;(4)2x2+7x+3=0. 3.用公式法解下列方程:(1)x2-23x+3=0;(2)-3x2+5x+2=0;(3)4x2+3x-2=0;(4)3x=2(x+1)(x-1).4.用因式分解法解下列方程:(1)x2-3x=0;(2)(x-3)2-9=0;(3)(3x-2)2+(2-3x)=0;(4)2(t-1)2+8t=0;(5)3x+15=-2x2-10x;(6)x2-3x=(2-x)(x-3).5.用合适的方法解下列方程:(1)4(x-3)2-25(x-2)2=0;(2)5(x-3)2=x2-9;(3)t2-22t+18=0.参考答案1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4.(2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3.(3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1.(4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5.(2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=±5.∴x 1=1+5,x 2=1- 5.(3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516.直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1= 3.∴x 1=x 2= 3.(2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =-2.b 2-4ac =32-4×4×(-2)=41>0.x =-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(-2)=11>0,∴x =3±1122=6±224.∴x 1=6+224,x 2=6-224. 4.(1)x(x -3)=0,∴x =0或x -3=0,∴x 1=0,x 2=3.(2)∵(x -3)2-32=0,∴(x -3+3)(x -3-3)=0.∴x(x -6)=0.∴x =0或x -6=0.∴x 1=0,x 2=6.(3)原方程可化为(3x -2)2-(3x -2)=0,∴(3x -2)(3x -2-1)=0.∴3x -2=0或3x -3=0,∴x 1=23,x 2=1. (4)原方程可化为2t 2+4t +2=0.∴t 2-2t +1=0.∴(t -1)2=0,∴t 1=t 2=1.(5)移项,得3x +15+(2x 2+10x)=0,∴3(x +5)+2x(x +5)=0,即(x +5)(3+2x)=0.∴x +5=0或3+2x =0.∴x 1=-5,x 2=-32. (6)原方程可化为x(x -3)=(2-x)(x -3).移项,得x(x -3)-(2-x)(x -3)=0.∴(x -3)(2x -2)=0.∴x -3=0或2x -2=0.∴x 1=3,x 2=1.5.(1)变形为[2(x -3)]2-[5(x -2)]2=0,即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0,即(7x -16)(-3x +4)=0.∴x 1=167,x 2=43. (2)5(x -3)2=(x +3)(x -3),整理得5(x -3)2-(x +3)(x -3)=0.∴(x -3)[5(x -3)-(x +3)]=0,即(x-3)(4x -18)=0.∴x -3=0或4x -18=0.∴x 1=3,x 2=92. (3)方程两边都乘以8,得8t 2-42t +1=0,∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0.∴t =-(-42)±02×8=24.∴t 1=t 2=24.良好的学习态度能够更好的提高学习能力。
中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

word公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=0 19.2x2+x﹣2=0 20.3x2+6x﹣4=0 21.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x ﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.34.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x﹣=0.52.x2x+1=053.2x2﹣9x+8=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=158.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;65. x2+3=2x.66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 .5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=094.3x2﹣4x﹣1=095.3x2+2(x﹣1)=0,97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=2原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x 1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x 2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x ﹣1)(x+2)=11x﹣4.3x 2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x 1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t 2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x 1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b 2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.2∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x﹣=0.∵关于x的一元二次方程2x2+x﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y 2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b 2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x 1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x 2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b 2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0 ∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0 ∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0 ∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a 2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x 2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x 1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 .5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x 2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x 2+2(x﹣1)=0,整理得:3x2+2x ﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x 2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x 1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b 2﹣4ac=25+8=33,∴x===.即x 1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x 1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x 2+5x+3=0,解得:x==,即:x1=,x2=;。
九年级数学上册用公式法解一元二次方程同步练习及答案

用公式法解一元二次方程——典型题专项训练知识点 1 一元二次方程的求根公式1.用公式法解-x2+3x=1时,需先求出a,b,c的值,则a,b,c依次为( ) A.-1,3,-1 B.1,-3,-1C.-1,-3,-1 D.-1,3,12.用公式法解方程3x2+4=12x,下列代入公式正确的是( )A.x=122-3×4)2×3B.x=122-4×3×4)2C.x=122+4×3×4)2D.x=(-12)2-4×3×4)2×3知识点 2 用公式法解一元二次方程3.方程x2+3x-14=0的解是( )A.x=65)2 B.x=65)2C.x=23)2 D.x=23)24.方程2x2-4x+1=0的根是( )A.x1=1+2,x2=1-2B.x1=2+2 2,x2=2-2 2C.x1=1+2)2,x2=1-2)2D.x1=2+2,x2=2-25.用公式法解方程:(1)x2-2x=1;(2)4x2-3=12x.知识点 3 一元二次方程根的判别式6.方程2x2-5x+3=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号7.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( ) A.0 B.-1C.2 D.-38.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是________.9.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.10.已知关于x的方程x2+2 kx-1=0有两个不相等的实数根,则k的取值范围是( ) A.k≥0 B.k>0C.k≥-1 D.k>-111.关于x的一元二次方程x2+4kx-1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断12.已知三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长是( )A.14 B.12C.12或14 D.以上都不对13.2017·通辽若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k 的取值范围在数轴上表示正确的是( )图2-3-114.中国古代数学家杨辉的《田亩比类乘除捷法》有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何.”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步.经过计算,你的结论是:长比宽多( )A.12步 B.24步C.36步 D.48步15.若在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为( )A.x=-2B.x1=-2,x2=3C.x1=3)2,x2=3)2D.x1=5)2,x2=5)216.已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m的值.17.已知关于x的一元二次方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根?(2)为m选取一个合适的整数值,使方程有两个不相等的实数根,并求出这两个根.18.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC 三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.1.A .2.D .3.B4.C [5.解:(1)x2-2x-1=0,x=(-2)2-4×1×(-1))2×1=1±2,∴x1=1+2,x2=1-2.(2)4x2-12x-3=0,x=(-12)2-4×4×(-3))2×4=3)8=3)2,∴x1=32+3,x2=32-3.6.B7.D .8.49.k≤1且k≠010.A11.A.12.B13.A 14.A15.D16.解:∵关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,∴Δ=(2m-1)2-4×1×4=0,∴2m-1=±4,∴m=52或m=-32.17.解:(1)∵关于x的一元二次方程x2-2(m+1)x+m2=0有两个不相等的实数根,∴Δ>0,即[-2(m+1)]2-4m2>0,解得m>-12.(2)∵m>-12,∴可取m=0,此时方程为x2-2x=0,解得x1=0,x2=2.(答案不唯一)18.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2+2b×(-1)+(a-c)=0,∴a+c-2b+a-c=0,∴a-b=0,即a=b,∴△ABC是等腰三角形.(2)△ABC是直角三角形.理由:∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,即a2=b2+c2,∴△ABC是直角三角形.(3)当△ABC是等边三角形时,(a+c)x2+2bx+(a-c)=0可整理为2ax2+2ax=0,∴x2+x=0,解得x1=0,x2=-1.。
人教版数学九年级上册《公式法解一元二次方程》同步练习题

21.2.2 公式法解一元二次方程同步练习题一、填空题1、把2 3x3 x22的形式后, 则 a =b, c =化成 axbx c 0 a 0,=______.2、用公式法解方程x 28x 15 ,此中 b 2 4ac =, x 1=, x 2 =_______ .3、不解方程,判断所给方程: ① x 2 3x70 ;② x 2 4 0 ;③ x 2x 1 0 中,有实根的方程有 个 .4、对于 x 的一元二次方程x 2m 2 xm 1 0有两个相等的实数根,则m 的值是.5、若一元二次方程bx 2 3x1 0 有解,则 b 应知足的条件是 ________.6、若对于 x 的方程 a 5 x24x 1有实数根,则 a 知足的条件是 _______.7、已知一个矩形的长比宽多2 cm ,其面积为 8 cm 2 ,则此长方形的周长为 ________.8、当 x =_______时,代数式 1 x 与 2x2x1的值互为相反数.349、若对于 x 的一元二次方程 x 2mx n有两个相等的实数根,则m , n 所知足的关系式是.10、若方程x 24x a0 的两根之差为,则 a 的值为 ________ .二、选择题1、利用求根公式求5x 216 x 的根时, a, b, c 的值分别是()2A .5, 1,6B.5,6,1C.5,- 6,1D. 5,- 6,- 12222 2、已知一元二次方程x 2 x10 ,以下判断正确的选项是()A .该方程有两个相等的实数根B.该方程有两个不相等的实数根 C .该方程无实数根D.该方程根的状况不确立3、方程 2 x24 3x 6 2 0的根是()A . x 12, x 2 3B . x 1 6, x 2 2C . x 1 2 2, x 22D . x 1 x 264、一元二次方程 x 2 ax 1 0 的两实数根相等,则a 的值为()A . a 0B . a 2, 或 a2C . a 2D . a 2或a 05、若对于 x 的一元二次方程k1 x2 kx 10 有实根,则 k 的取值范围是()A . k 1B . k2C. k2且k 1 D . k 为一确实数6、假如对于 x 的一元二次方程 kx 22k 1x 1 0有两个不相等的实数根,那么 k 的取值范围是()1A . k1 B . k 1且 k 0C .1k1 D .1 k1且 k 02222227、已知 a 、b 、 c 是△ ABC 的三边长,且方程 a 1 x 22bx c 1x 2 0 的两根相等, ?则△ ABC 为()A .等腰三角形B .等边三角形C.直角三角形D.随意三角形8、假如不为零的 n 是对于 x 的方程 x 2mx n 0 的根,那么 mn 的值为()A .-1B .-1C.1D. 1229、若 m 2 n 2 m 2n 2 2 80 ,则 m 2n 2 的值是()A . 4B. -2C.4或-2D.-4 或2三、利用公式法解以下方程( 1) x25 2x 2 0(2) 3x26x 12 0( 3) 2y21y 2 033( 4) x 22x 4 0 ( 5) 2x x 3 x 3( 6) 5x 2 5 2x 1( 7) x 1 x 812(8) 2 x32x29( )3x 222x 24 09四、解答题1、如图,是一个正方体的睁开图,标明了字母A 的面是正方体的正面, ?假如正方体的左面与右边所标明代数式的值相等,求x 的值.2、小明在一块长 18m 宽 14m 的空地上为班级建筑一个花园(暗影部分),所建花园占节余空地面积的1,请你求出图中的 x .23。
九年级上册数学解一元二次方程配方法、公式法同步练习及答案

九年级上册数学解一元二次方程配方法、公式法同步练习及答案1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( )A .4,13B .-4,19C .-4,13D .4,193.方程x 2-x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程:(1)x 2+5x -1=0;(2)2x 2-4x -1=0;(3)2x 2+1=3x .7.用公式法解下列方程:(1)x 2-6x -2=0;(2)4y 2+4y -1=-10-8y .8.阅读下面的材料并解答后面的问题:小力:能求出x 2+4x +3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x 2+4x +3=x 2+4x +4-4+3=(x 2+4x +4)+(-4+3)=(x +2)2-1,而(x +2)2≥0,所以x 2+4x +3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x 2-8x +5的最小值?如果能,写出你的求解过程.9.已知关于x 的一元二次方程x 2-mx -2=0.(1)若x =-1是这个方程的一个根,求m 的值和方程的另一根;(2)对于任意的实数m ,判断方程的根的情况,并说明理由.10.已知关于x 的方程x 2-2x -2n =0有两个不相等的实数根.(1)求n 的取值范围;(2)若n <5,且方程的两个实数根都是整数,求n 的值.答案1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292. ∴x 1=29-52,x 2=-29-52. (2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12. 配方,得x 2-2x +1=32,(x -1)2=32. ∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2,∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0.∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32. 8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11,∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根,所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2.所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0,a =1,b =-2,c =-2n ,∴Δ=b 2-4ac =4+8n >0.解得n >-12. (2)由原方程,得(x -1)2=2n +1.∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5,∴0<2n +1<11,且2n +1是完全平方形式.∴2n +1=1,2n +1=4或2n +1=9.解得,n =0,n =1.5或n =4.。
九年级数学(一元二次方程的解法--公式法)同步练习 试题

轧东卡州北占业市传业学校一元二次方程的解法用适当的方法解以下方程:(1)2 x 2+x -6=0; (2) 0422=+-x x ; (3)5x 2-4x -12=0; (4)4x 2+4x +10=1-8x.〔5〕3x 2-4x =2x ; 〔6〕31〔x +3〕2=1; 〔7〕x 2+(3+1)x =0; 〔8〕x 〔x -6〕=2〔x -8〕;〔9〕〔x +1〕〔x -1〕=x 22; 〔10〕x 〔x +8〕=16;11、用公式法解方程:3x (x -3) =2(x -1) (x +1).12、不解方程,判别方程05752=+-x x 的根的情况。
13、假设关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,求m 的取值范围。
14、y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2?15、课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道〔如图〕,要使种植面积为600平方米,求小道的宽.达标测评1.用公式法解以下方程:〔16〕2220x x +-=; 〔17〕23470x x +-=;〔18〕22810y y +-=; 〔19〕212308x x -+=. 2.用适当的方法解以下方程:〔20〕2(2)3y -=; 〔21〕2(23)3(43)x x +=+; 〔22〕2320x x --=; 〔23〕(1)(2)5x x -+=. 解方程〔1—3配方法,4—6公式法,7、8因式分解法〕〔24〕2230x x --= 〔25〕2450x x +-= 〔26〕(1)(3)8x x --= 〔27〕2310x x --= 〔28〕23740x x -+= 〔29〕(23)46x x x +=+〔30〕(x -3)2+2x(x -3)=0 〔31〕()963222+-=+x x x 32、关于x 的方程04)2(2=+++k x k kx 〔1〕当k 为何值时,方程有两个不相等的实数根,〔2〕当k 为何值时,方程有两个相等的实数根, 〔3〕当k 为何值时,方程没有实数根,33、关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值。
人教版九年级数学上册21.2.2公式法-根的判别式同步练习题

一元二次方程根的判别式同步练习题一、选择题1.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,-3,1 B.2,3,-1 C.-2,-3,-1 D.-2,3,12.一元二次方程2x2-3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2-1=0 D.x2-2x-1=04.下列方程有两个相等的实数根的是()A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x-2=0 5.下列选项中,能使关于x的一元二次方程ax2-4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=06.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b 的大致图象可能是()7. 如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且k≠0 C.k<-14D.k≥-14且k≠08.x)A.3x2+5x+1=0 B.3x2-5x+1=0 C.3x2-5x-1=0 D.3x2+5x-1=0二、填空题9.若关于x的一元二次方程(k−1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是______.10.若关于x的一元二次方程x2−2x−k=0有两个相等的实数根,则k=______.11.已知关于x的方程(m−2)x2−2x+1=0有实数根,则实数m的取值范围是______.12.若关于x的一元二次方程x2+3x−k=0有两个相等的实数根,则k的值是______.13.如果关于x的一元二次方程kx2−3x+1=0有两个实数根,那么k的取值范围是________.14.若关于x的一元二次方程(3−m)x2−2x+1=0有两个不相等的实数根,则m的取值范围为_____________________.三、解答题15.关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及方程的根?16.已知:关于x的方程mx2-4x+1=0(m≠0)有实数根(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值17.已知关于x的方程mx2+(2m-1)x+m-1=0(m≠0).(1)求证:方程总有两个不相等的实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式法解一元二次方程
一、课前预习
1.一元二次方程的一般形式______________________________________
2.写出下列一元二次方程的a,b,c,并求出b 2-4ac 的值
(1)2x 2-3x=0 (2)3x 2(3)4x 2+x+1=0
二、课堂流程
归纳:1、一般地,式子b 2-4ac 叫做关于x 的方程ax 2+bx+c=0 (a ≠0)根的________,通常用希腊字母△表
示,即△=________
2、当△>0时,方程ax 2+bx+c=0 (a ≠0)有__________________________当△_____0时,方程
ax 2+bx+c=0 (a ≠0),有两个相等的实数根;
当△<0时,方程ax 2+bx+c=0 (a ≠0)______________________________
当△≥0时,方程ax 2+bx+c=0 (a ≠0)的实数根可写为_____________________,这个式子叫做一元 二次方程ax 2+bx+c=0 (a ≠0)的求根公式。
用求根公式解一元二次方程的方法叫公式法。
(三)当堂训练:
例1:不解方程,判定方程根的情况
(1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 ( 4)x 2-7x-18=0
例2.用公式法解下列方程:
(1) x 2 -4x-7=0 (2) 2x 2 -2
2x+1=0 (3) 5 x 2 -3x=x+1 (4) x 2 +17=8x
三、课后作业
1、下列方程中,无实数根的是( )
A.4x 2+3x=2
B.2x 2-4x+7=0
C.2x 2 +1=4x
D. 4x 2-20x=25
2.下列方程中,有两个相等的实数根的是( )
A. x 2-5x-1=0
B.9 x 2=4 x 2- (3x-1)
C.23x 2-267 x-2=0
D. 2x 2+(3.若关于x 的方程mx 2+(2m+1)x+m=0有实数根,则m 的取值范围为_________
4.如果分式3
322---x x x 的值为0,则x 值为
A.3或-1
B.3
C.-1
D.1或-3 5. 已知三角形两边长分别是1和2,第三边的长为2x 2-5x+3=0的根,则这个三角形的周长是 A.4 B.214 C.4或2
14 D.不存在
6.用公式法解下列一元二次方程
(1)x 2+x-6=0 (2) x 2-3x-4
1 =0 (3) 3x 2
-6x-2=0
(4) 4x 2-6x=0 (5) x 2+4x+8=4x+11 (6)x(2x-4)=5-8x
7.一个直角三角形的两条直角边相差5cm ,面积是7cm 2,求斜边的长___________.
8.两个相邻偶数的积是168,这两个偶数是_______________.
9.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?
10.有一根20m 长的绳,怎样用它围成一个面积为24 cm 2的长方形?
11.一个直角三角形的两条直角边的和是14cm,面积是24cm 2,求两条直角边的长。
能力提高:某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只
交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100
A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
根据上表数据,求电厂规定的A 值为多少?。