铝合金的腐蚀与防护
抑制铝合金表面腐蚀的方法

抑制铝合金表面腐蚀的方法铝合金是一种广泛应用于各种工业领域的材料,但由于其本身的化学性质,容易受到腐蚀的影响。
为了保护铝合金表面免受腐蚀的侵害,采取一系列措施是非常必要的。
本文将介绍几种常见的抑制铝合金表面腐蚀的方法。
1. 表面处理铝合金表面的处理是预防腐蚀的重要步骤。
常见的表面处理方法包括阳极氧化、电镀、喷涂等。
阳极氧化是一种通过电解氧化来增强铝合金表面耐腐蚀性的方法。
通过在铝合金表面形成一层致密的氧化膜,可以有效抑制腐蚀物质的侵蚀。
电镀和喷涂也可以在铝合金表面形成一层保护膜,起到抑制腐蚀的作用。
2. 使用防腐涂层在一些特殊环境下,如海洋环境或化工厂等,铝合金容易受到腐蚀的侵袭。
为了增强其耐腐蚀性,可以在铝合金表面涂上一层防腐涂层。
防腐涂层可以有效隔离空气、水分和化学物质对铝合金的腐蚀,延长其使用寿命。
3. 控制环境条件环境条件是导致铝合金腐蚀的重要因素之一。
在一些潮湿、高温或者含有酸性、碱性物质的环境中,铝合金容易出现腐蚀现象。
因此,在使用铝合金的过程中,应尽量控制环境条件,避免铝合金长时间暴露在恶劣的环境中。
4. 定期维护定期维护是保护铝合金表面免受腐蚀的重要措施。
定期检查铝合金表面的腐蚀情况,及时发现问题并采取相应措施是非常必要的。
定期清洁和保养铝合金表面,去除污垢和杂质,可以延长其使用寿命。
5. 使用合适的防护设备在特殊环境下使用铝合金时,可以考虑使用一些防护设备来减少腐蚀的发生。
例如,在海洋环境中使用铝合金时,可以使用防腐蚀涂层、防护罩等设备来隔离海水和空气对铝合金的侵蚀。
总结起来,抑制铝合金表面腐蚀的方法包括表面处理、使用防腐涂层、控制环境条件、定期维护和使用合适的防护设备等。
通过这些措施的综合应用,可以有效延长铝合金的使用寿命,减少腐蚀带来的损失。
在实际应用中,应根据具体情况选择合适的抑制方法,并定期检查和维护铝合金表面,以保持其良好的耐腐蚀性能。
铝合金的腐蚀与防护

铝合金的腐蚀与防护作者:刘姝慧来源:《青年文学家》2013年第02期摘要:铝及其合金使用越来越广泛,在各行各业中都得到了大量的应用。
与此俱来的问题就是铝及其合金的腐蚀与防护。
本文对此进行了较为全面的介绍。
关键词:铝合金;性能;腐蚀;氧化;应用[中图分类号]:TB304 [文献标识码]:A[文章编号]:1002-2139(2013)-2--01铝元素占地壳重量的8.2%左右,是地壳内含量最多的金属元素。
铝元素的电负性很强,并且对氧有强亲和性,自然状态下可以生成氧化铝膜。
氧化铝电导率低,除去后还会快速形成,所以会影响阳极反应。
铝氧化膜有高应得的、耐腐蚀、耐磨、装饰性、电镀附着性、绝缘性等良好性能而被广泛利用在生产生活中,因此铝合金是生产生活中重要的原材料。
1.铝合金分两类1.1铸造用铝合金:硅元素能够提高金属流动性、抗热震性和紧压力因此硅在合金中应用较多。
但硅铝合金机械强度不够,加入镁和铜等其他金属再经过热处理,可以提升合金机械强度所。
而加入钙或锶,可增大硅铝合金延展性。
加入硼、钛或钛、磷,可以强化抗张强度和抗热震性。
1.2加工用铝合金如:编号1000系列是纯度在99%以上的铝。
1100系列合金中加入0.12%的铜、铁、硅。
此种合金具有高导热性和导电性,但是机械强度和抗腐蚀性都很低。
6000系列合金中主要的合金元素是镁和硅。
这种合金需要经过热处理,硅化镁是其强化析出物。
铝钛合金和铝锂合金是新型合金,是重要的航空材料。
钛使合金的强度增大,而锂使合金的密度减小,使弹性模量增大。
铝锂合金添加镁可使其密度减小,强度增大。
2.铝及其合金的应用由于铝合金具有良好的导电性导热性耐腐蚀性、强度高可加工性高的优良的性能,被用于各种方面。
如:包装材料、耐用消费品、建筑结构材料、运输、航空、电力、机械设备等等。
3.腐蚀形态工业发展至今,铝合金材料被大量使用,由此产生的铝合金腐蚀与防护问题就尤为突出了。
铝合金除了在磷酸和碱溶液等少数物质中发生全面腐蚀外,都只产生局部腐蚀,常见腐蚀形态为:电偶腐蚀、晶间腐蚀、点腐蚀、层状腐蚀、缝隙腐蚀和丝状腐蚀等。
飞机铝合金零件腐蚀机理与防护

据统计,铝和铝合金要占一架飞机总重量的70%,而飞机的结构件大部分是由铝合金材料构成。
铝合金构件的损伤形式有多种,如疲劳断裂、裂纹、变形、磨损等,其中腐蚀是最常见的损伤形式之一。
由于腐蚀造成的事故占飞机全部损伤事故的20%,这个问题在老龄飞机上变现的尤为突出。
由于腐蚀问题的存在,往往缩短飞机结构件的使用寿命,甚至还危及飞行安全。
如1988年Aloha航空公司的波音737飞机发生空中事故,经过事故调查后认为:由于机身增压舱纵向蒙皮搭接接头处一排铆钉孔,在服役的热带海洋环境和循环增压载荷作用下,引起了不可检测的多条腐蚀疲劳裂纹,从而引起事故。
因此,腐蚀问题不容忽视,这就需要我们在航空维修过程中加强检查与控制。
飞机结构件的腐蚀是飞机在使用环境中随着时间推移而发生的化学累积性损伤。
作为电化学反应,必须同时具备三个条件才能发生,即活性金属、腐蚀环境(介质)和导电通路。
同时,它又作为与时间有关的损伤,需要一定时间的累积才能发生,并且要求在一定的损失范围之内就进行维护和修理。
一般民航和军航的飞机维修规定:腐蚀损失深度不超过蒙皮厚度的10%。
腐蚀的种类很多,通过对飞机铝合金材料构件腐蚀情况的统计和分析得知,点蚀、剥蚀缝隙腐蚀这三类是腐蚀的主要表现形式。
其中,点蚀改变飞机结构的应力分布,引起局部应力集中,从而形成腐蚀疲劳裂纹;剥蚀和缝隙腐蚀使蒙皮、桁条等构件的厚度减薄,大大降低材料的强度,增大应力,最终导致构件裂纹,甚至断裂。
在飞机结构修理中,构件中存在应力腐蚀裂纹是一个常遇到的实际问题。
例如,1L-18飞机上翼面处的大量B94铝合金铆钉产生了应力腐蚀裂纹。
应力腐蚀裂纹通常都很小,宽度较窄,没有引起人们注意的特征,又因常被腐蚀产物覆盖,所以很难发现,有时需要采用无损探伤技术进行检查。
构件发生应力腐蚀断裂时,常常是在事先没有明显预兆的情况下突然发生,因此对飞机的飞行安全危害较大。
一般来说,腐蚀坑洞是应力腐蚀裂纹的主要萌生源。
铝合金的腐蚀与防护

一.引言1.1金属防腐蚀的重要意义金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。
但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。
金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。
使得腐蚀科学在国民经济中所处的地位越来越重要。
据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。
据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。
以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。
1.2铝合金及其腐蚀机理铝合金是近代发展起来的一类重要的金属材料。
铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。
但是铝合金与其他金属一样,也面临着严重的腐蚀问题。
虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。
铝合金的腐蚀与防蚀

铝合金的腐蚀与防蚀铝合金是一种由铝、铜、镁和锰等材料合成的材料,具有良好的强度、耐腐蚀性和导电性。
然而,即使经过特殊处理,铝合金仍然容易腐蚀。
腐蚀会导致材料质量降低、外观损坏和功能受损。
在本文中,我们将探讨铝合金的腐蚀原因、种类和防蚀方法。
铝合金的腐蚀原因铝合金的腐蚀原因主要与以下几个因素有关:氧化铝合金在空气中会形成氧化层。
这一层氧化物对铝合金来说不是一种保护性层,因为它不能够完全防止铝合金被腐蚀,而且它还容易被其他氧化物或者导致氧化层脱落的因素破坏。
环境气体铝合金的腐蚀还与环境污染物和气体有关,例如二氧化硫、氯、酸雨等等。
这些化学物质会对铝合金进行腐蚀,从而使其表面出现疏松层和腐蚀孔洞,这些区域会迅速扩大导电性铝合金是一种优良的导体。
这意味着铝合金可以轻易地从一个点到另一个点流动,这可以导致腐蚀。
如果电导率增加,铝合金容易被电化学腐蚀。
铝合金的腐蚀种类铝合金腐蚀可以分为以下几类:分散腐蚀分散腐蚀是由于金属表面的微小缺陷或局部组成差异而引起的腐蚀。
这种腐蚀会在材料表面出现许多环状凹陷,并快速地向材料内部发展。
分散腐蚀通常是由于环境中的强化离子所引起的。
电化学腐蚀电化学腐蚀是铝合金腐蚀种类中最常见的一种。
这种腐蚀容易发生,而且具有快速扩散的特点。
当金属表面接触到环境气体或电解液时,金属表面会生成氧化物,同时由于氧化还原反应而产生电荷。
这些电荷会导致金属表面出现腐蚀。
腐蚀疲劳腐蚀疲劳通常由于交变应力和腐蚀环境的共同作用引起。
这种腐蚀是一种缓慢的腐蚀,在表面形成疏松层。
这些疏松层如果受到应力,则很容易形成裂纹,从而导致材料的强度下降。
防蚀方法下面列出一些常见的防止铝合金腐蚀的方法:涂层保护涂层保护是最常见的防腐方法之一。
在这种方法中,我们使用一层保护性涂料来遮盖铝合金表面,减少其暴露在空气中的时间。
这样可以减少氧化和进一步腐蚀的可能性。
一些常见的涂层包括环氧树脂、聚酰亚胺、丙烯酸等。
这些涂层也可以用于保护其他金属的腐蚀。
铝合金表面防腐保护剂及防腐方法

铝合金表面防腐保护剂及防腐方法在现代工业和日常生活中,铝合金因其优异的性能,如轻质、高强度、良好的导电性和导热性等,被广泛应用于航空航天、汽车制造、建筑、电子等众多领域。
然而,铝合金在特定的环境中容易受到腐蚀,这不仅会影响其外观,还可能降低其性能和使用寿命。
因此,寻找有效的铝合金表面防腐保护剂及防腐方法显得至关重要。
铝合金的腐蚀主要有电化学腐蚀、化学腐蚀和应力腐蚀等几种形式。
电化学腐蚀是最常见的一种,当铝合金表面的氧化膜受到破坏,暴露在电解质溶液中时,就会形成微电池,导致金属的溶解。
化学腐蚀通常发生在强腐蚀性介质中,如强酸、强碱等。
应力腐蚀则是在拉伸应力和特定腐蚀介质的共同作用下产生的。
为了防止铝合金的腐蚀,人们研发了多种表面防腐保护剂。
其中,铬酸盐转化膜是一种传统且有效的保护剂。
它能在铝合金表面形成一层致密的氧化膜,具有良好的耐腐蚀性。
但由于铬酸盐具有毒性,对环境和人体健康有害,其应用受到了越来越严格的限制。
磷酸盐转化膜是另一种常用的防腐保护剂。
它通过化学反应在铝合金表面生成一层磷酸盐结晶膜,能够提高铝合金的耐蚀性和涂层附着力。
不过,磷酸盐转化膜的耐腐蚀性能相对较弱,需要与其他防护措施结合使用。
近年来,锆钛系转化膜逐渐受到关注。
这种转化膜具有低毒、环保的特点,且能提供较好的耐腐蚀性能。
它的形成机制是通过锆离子和钛离子与铝合金表面的反应,生成一层复杂的氧化物和氢氧化物膜。
除了转化膜类保护剂,有机涂层也是常见的防腐手段。
有机涂层可以有效地阻隔外界腐蚀性介质与铝合金表面的接触。
例如,环氧树脂涂层具有良好的耐腐蚀性、附着力和机械性能。
聚氨酯涂层则具有出色的柔韧性和耐候性。
在选择防腐保护剂时,需要考虑多种因素,如铝合金的使用环境、预期的防护寿命、成本等。
对于恶劣的腐蚀环境,可能需要采用多层防护体系,如先进行转化膜处理,再施加有机涂层。
在实际应用中,防腐方法也多种多样。
阳极氧化是一种常用的方法,通过电解过程在铝合金表面生成一层较厚的氧化膜,大大提高了铝合金的耐腐蚀性和耐磨性。
铝合金的腐蚀与防护

一.引言1.1金属防腐蚀的重要意义金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。
但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。
金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。
使得腐蚀科学在国民经济中所处的地位越来越重要。
据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。
据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。
以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。
1.2铝合金及其腐蚀机理铝合金是近代发展起来的一类重要的金属材料。
铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。
但是铝合金与其他金属一样,也面临着严重的腐蚀问题。
虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。
铝合金的应力腐蚀

铝合金的应力腐蚀
应力腐蚀是指在特定应力环境下,金属材料遭受腐蚀的现象。
对
于铝合金来说,也存在应力腐蚀的问题。
铝合金在一些特定条件下,如高温、高氯离子浓度、应力等环境
下容易发生应力腐蚀。
应力腐蚀会导致铝合金的力学性能下降,甚至
引发严重的破坏。
应力腐蚀对铝合金的影响是由于一些特定条件下,铝合金表面的
保护层受到破坏,使得金属表面裸露出来。
在高应力作用下,金属结
构上的缺陷、裂纹等容易与外界介质相互作用,加速金属腐蚀的进程。
为了避免铝合金遭受应力腐蚀,可以通过以下措施进行防护:
1. 避免高应力环境:避免在高应力环境下使用铝合金材料,如尽量避
免应用于高温、高氯离子浓度的场合。
2. 表面处理:通过表面处理方法,如阳极氧化、镀层等,形成一层保
护层,减弱金属表面遭受腐蚀的可能性。
3. 合理设计:在设计上合理避免应力集中,减少铝合金的应力水平,
从而降低应力腐蚀的风险。
4. 控制环境条件:控制环境中的温度、氧气、湿度等因素,尽量减少
对铝合金的腐蚀影响。
总之,铝合金在特定条件下容易出现应力腐蚀问题,因此在使用
时需要采取相应的防护措施来减少应力腐蚀的风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.引言1.1金属防腐蚀的重要意义金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。
但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。
金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。
使得腐蚀科学在国民经济中所处的地位越来越重要。
据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。
据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。
以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。
1.2铝合金及其腐蚀机理铝合金是近代发展起来的一类重要的金属材料。
铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。
但是铝合金与其他金属一样,也面临着严重的腐蚀问题。
虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。
为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。
一般而言,金属在满足以下5个基本条件下就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。
铝合金的腐蚀电化学反应为:Al 3++ 3e-( 1)O2 + 2H20 + 4 e - -(中性/碱性) (2)2H ++ 2 e-H 2(g)(酸性) (3)由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、氧或电解质的进一步渗透,降低腐蚀速率。
二.铝合金的表面防护处理方法由铝合金的腐蚀机理可知只有把阴极钝化剂和阻挡涂层有机地结合才能很好地控制腐蚀发生。
这就需要对铝合金表面进行保护,而涂装涂料是经济有效的方式之一。
传统的涂层保护体系包括3层:第一层为转变层,转变涂层主要有4种类型:(1)氢氧化铬或其氧化物所形成的膜;(2)沉淀的重金属磷酸盐或其氧化物膜;(3)合成的各种聚合物膜;(4)用高锰酸所形成的锰氧化物/铝氧化物膜。
该层的作用是将金属表面转变为更耐腐蚀的表面层或者使所配套的底漆形成更容易粘附、粘结力更强的表面。
转变层的作用就是增加基材与底漆(底胶)间的勃结和防腐作用。
第二层是底漆,主要起防腐蚀作用,由环氧树脂包覆的铬酸盐和非铬酸盐颜料组成,其中铬酸盐(如铬酸银)起缓蚀剂的作用,工艺厚度规定为15-25μm。
第三层为面漆,是由聚氨醋和环氧树脂组成,厚度约55-80μm。
主要起耐环境(如耐候、耐紫外线)腐蚀、耐介质腐蚀和装饰的作用。
以前工业上为了保护铝合金材料通常的处理方法是铬化处理。
铬化处理是有色金属铝及其合金、锌及马口铁(镀锌钢板)或镁合金最常用最有效的传统的表面处理方法。
通过铬酸盐处理得到的氧化膜具有良好的耐蚀性,但是该膜优越的性能与膜结构中的六价铬有关,由于六价铬具有致癌性,对人体及环境有严重的危害,自1982起,世界环境保护组织就提出了限制使用铬酸盐和其它含铬酸盐的化合物的规定。
因此,研制无铬、有效、价格低、环境友好的铬酸盐及缓蚀剂替代品和环境友好的转变层处理工艺是航空涂料工业界所迫切需要解决的问题,也是科技工作者面临的新课题。
另外,用传统的涂料材料和新工艺能实现防腐、环境友好、美观并具有伪装功能和耐久性(10年或更长)的涂装技术更是值得研究的课题。
下面就介绍一下一些比较新型的处理方法:2.1 阴极保护法阴极保护技术是一项经济效益十分显著的控制腐蚀的电化学保护技术。
将被保护的金属进行阴极极化,使电位负移到金属表面阳极的平衡电位,消除其电化学不均匀性所引起的腐蚀电池,使金属免遭腐蚀。
它可以成倍地延长被保护件的使用寿命,阴极保护与防护涂料联合使用时,阴极保护使涂层缺陷处和毛细孔处金属构件免遭腐蚀。
根据施加阴极极化电流的方法不同,阴极保护方法可分为两大类:外加电流法和牺牲阳极法。
其中外加电流阴极保护法是利用一个直流电源,配之以辅助阳极,对被保护的金属通人阴极电流,不过该方法存在电流难以均匀、氢脆、杂散电流等缺点,而牺牲阳极保护法无上述缺点,下面着重介绍这种方法。
牺牲阳极保护法是利用一个腐蚀电位比较负的金属与被保护的金属组成接触腐蚀电偶。
由于两者电极电位不同,可以构成腐蚀原电池,所产生的电流便是起阴极保护作用的阴极电流。
这种比被保护金属电位更负的活泼金属电极称为牺牲阳极。
牺牲阳极保护最明显的特点是不需要外部供电,安装简单,使用可靠,几乎无需维修管理,电流分布均匀,不会对周围结构引起杂散电流腐蚀。
运用牺牲阳极保护法的关键在于如何选择好合适的牺牲阳极,牺牲阳极在阴极保护中优先溶解.产生足够的电流使金属结构阴极极化到所需要的保护电位。
要达到完全保护,必须使被保护的金属结构电位阴极极化到结构表面上最合适的阳极点的平衡电位。
所以,牺牲阳极的电位应该比这一平衡电位还要负。
2.2锌系磷化法中化化工科学技术研究总院研制出可以同时处理钢铁、铝及铝合金、锌及锌合金的磷化液WES一01。
该磷化液的使用有2个突出的特点:①可用于喷淋线;②磷化温度为低温或常温,一般30~40℃。
传统的铝及铝合金的锌系磷化,由于设置出光工序,所以一般采用浸泡工艺处理,而且处理温度不能低于50℃,否则不能获得良好的磷化膜。
而WES-01则突破了这一缺陷,推动了铝材锌系磷化的技术进步。
在工作液的总酸度为20~25点、游离酸度为O.6—1.4点、促进剂为2~3点、温度为30~40℃、喷淋时间为60~90s的情况下,纯铝的磷化膜略暗或呈浅灰色,铝合金由于其材质不同而呈浅灰色、灰色、深灰色不等。
漆膜的连续中性盐雾试验为268 h,湿热试验大于50 h。
所处理的工件可以是薄铝板,也可以是形状复杂的铝合金件,如冰箱铝制蒸发器及电视机后壳、工具、门窗、汽车配件等。
该磷化液不仅能在喷淋线上使用,而且还可以在浸泡线上使用,同样都能进行钢、铝、锌的单独处理或混装处理。
值得注意的是,铝制蒸发器涂装后还需要在120℃下覆膜,再于180℃下流化,涂层也不起泡和脱落;还有一种铝件,涂装后还需要进行剪切,然后再于120℃覆膜,涂层也不起泡和脱落。
这种产品对前处理和涂层的要求非常高,任何一点质量隐患都会在覆膜和流化过程中出现问题,而且这样的产品肯定要进行覆膜和流化,客户要求不能有任何起泡现象发生,更不能出现涂层脱落。
用户曾经将涂装后的产品放置1个月后再进行覆膜及流化,涂层也没有起泡和脱落现象发生。
2.3稀土元素保护法稀土铝合金材扦是在金属铭中加入稀土元素,它能够起到净化、提高纯度、填补表层缺陷、细化晶粒、减少偏析,消除显微不均而导致的局部腐性的作用、同时也带来铝的电极电位负移,具有了栖牲阳极效应和优异的导电性能,从而大大提高了铝的耐蚀性能。
对于海洋环境中CI-和石油、化工环境中的S,H2S+CO2等腐蚀问题,这种材料有独特的防腐机理:稀土金属的强还原性可以与S, H2S, CI的强氧化性有效结合、相互作用,生成稳定的化合物、将化学反应中的羲化和还原过程有机统一,相互作用、从根本上通止了S, H2S, C1-等腐蚀介质的或化活动造成的腐性破坏,从而彻底解决了在全球范围包括美国在内的发达国家未能很好解决的问题经北京有色金属研究总院千国家级检测部门的检测和工程实例数据分析表明,在氛离子、海水、海洋大气、盆雾环境(干湿交替)、饱和HsS、硫以及高温、高压环境条件下,稀土铝合金的年腐性率为零或几乎为零。
这种材抖配之首创的热浸披、热喷极工艺。
可以使防腐工程达到百年超长使用寿命。
稀土带来的这些优异的性能改善使稀土铝合金能够在石油、化工、建筑、市政、交通、电力、冶金、船铂、军工、航空航天、水电热电、热工、天然气钢瓶、机械轻工系统中广泛使用稀土铝合金干离子TC产品是对稀土铝合金敏层进行徽弧子离子式化来实现铰层表面稀土铝的陶瓷化.它不但能够耐数千度高温,在航空、航天、宇宙飞船等领城使用,而且彻底解决了绝大多数(少数未及试脸)任意浓度的强酸、强碱、强乳化剂、井下条件等极为苛刻的腐蚀环境下的防腐问题。
2.4 激光熔覆法激光熔覆法是在高能光束的作用下,将一种或多种合金元素和基体表面快速加热熔化,光束移开后自然冷却的一种表面强化方法。
通过该方法可以在铝合金表面熔覆铜基、镍基复合材料以及陶瓷粉末,提高铝合金表面的耐腐蚀性。
但是该方法的不足之处是界面上易形成脆性相和裂纹,实际应用中涂层的尺寸精度、对基体复杂形状的容许度、表面粗糙度等问题较难解决。
2.5溶胶护膜溶胶一凝胶法用过渡金属醇盐作为合成氧化物的前驱体,采用一凝胶工艺可以在铝合金表面形成一层氧化物保溶胶一以对铝合金起到防腐蚀的作用。
通过铝合金进行表面处理是近几年来人们研究的热门问题之一。
.不同的学者对不同的体系进行了研究,如胡吉明等对铝合金表面BTSE硅烷化处理的研究;尤宏等对乙烯基三甲氧基硅烷、,一(甲基丙烯酞氧)丙基三甲氧基硅烷和丫一环氧丙基醚基三甲氧基硅烷这3种硅烷偶联剂及正硅酸乙醋形成的有机一无机杂化膜的研究;郭增昌等采用溶胶一凝胶工艺,对3一缩水甘油醚丙基三甲氧基硅烷和正硅酸乙醋水解形成的纳米有机一无机杂化膜的研究;YJDu等也进行了有机一无机杂化膜涂层的研究,并且还可以实现表面处理与底漆涂装一步完成。
试验结果表明,使用不溶于水的防腐填料,徐膜的耐盐雾试验可以达到1个月,但是,室温固化的杂化涂层耐水性较差,需要经过高温固化,这也是杂化涂料今后需要解决的问题。
美国空军研究实验室的MS D onley等介绍了一种新的溶胶一凝胶方法—自组装纳米颗粒法,即首先通过溶胶一凝胶过程形成纳米颗粒,然后通过纳米颗粒自组装形成一层致密的保护膜。