期末复习试题1
贵州省毕节市织金县2024届七年级数学第一学期期末复习检测试题含解析

贵州省毕节市织金县2024届七年级数学第一学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,∠AOC =90°,OC 平分∠DOB ,且∠DOC =22°36′,∠BOA 度数是( )A .67°64′B .57°64′C .67°24′D .68°24′2.下列方程变形正确的是( ) A .方程2 1.20.30.4x x +-=化成1010201234x x +-= B .方程()5741x x -=--去括号,得5741x x -=-- C .方程9683x x -=+,移项可得9836x x -=+ D .方程3443y =,未知数的系数化为1,得1y = 3.如图所示的是一副特制的三角板,用它们可以画出-一些特殊角.在下列选项中,不能用这副三角板画出的角度是( )A .18B .108C .82D .1174.如图,某校学生要去博物馆参观,从学校A 处到博物馆B 处的路径有以下几种. 为了节约时间,尽快从A 处赶到B 处,若每条线路行走的速度相同,则应选取的线路为( )A .A→F→E→B B .A→C→E→BC .A→C→G→E→BD .A→D→G→E→B5.按照如图所示的计算机程序计算,若开始输入的x 值为3,第一次得到的结果为4,第二次得到的结果为2,…第2019次得到的结果为( )A .1B .2C .3D .46.已知关于x 的方程53142x a x -=-,若a 为正整数时,方程的解也为正整数,则a 的最大值是( ) A .12B .13C .14D .157.我县公交车试运营两个月,期间乘客坐车免费.如图,数轴上的点,,,,A B O C D 表示我县一条大街上的五个公交车站点,有一辆公交车距A 站点4km ,距C 站点0.3km ,则这辆公交车的位置在( )A .A 站点与B 站点之间 B .B 站点与O 站点之间C .O 站点与C 站点之间D .C 站点与D 站点之间8.已知代数式2x y -的值是5,则代数式361x y -+的值是( ) A .16B .-14C .14D .-169.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分C .6点45分D .9点10.下列各数能整除的是( ) A .62B .63C .64D .66二、填空题(本大题共有6小题,每小题3分,共18分)11.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨,该市小明家5月份用水12吨,交水费20元,该市规定的每户月用水标准量是_____吨.12.如图,已知,,AB CD EF 相交于O 点,135∠=,235∠=,则3∠的度数是__________.13.直线l 上有,,A B C 三点,已知6AB =,2AC BC =,则BC 的长是__________.14.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.15.同一直线上有两条等长的线段AB ,CD (A 在B 左边,C 在D 左边),点M ,N 分别是线段AB ,CD 的中点.若6BC cm =,4MN AB =,则AB =__________cm .16.苹果原价是每千克x 元,按8折优惠出售,该苹果现价是每千克____元(用含x 的代数式表示). 三、解下列各题(本大题共8小题,共72分)17.(8分)如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由. 18.(8分)微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?19.(8分)某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元)+2 +2 +1 0 ﹣1 ﹣2请问,该服装店售完这30件连衣裙后,赚了多少钱?20.(8分)某牛奶加工厂可将鲜奶加工成酸奶或奶片销售,也可不加工直接销售。
2023年六年级数学下册期末复习试题卷(1)

2023年六年级数学下册期末复习试题卷(1)一、填一填。
1.拉抽屉是()现象,风扇叶片是()现象,电梯的上下运动是()现象,时针分针的运动是()现象。
2.分针从“12”开始,顺时针旋转90°,分针指向();分针从“8”开始,逆时针旋转120°,分针指向()。
3.长方形有()条对称轴,正方形有()条对称轴,等腰三角形有()条对称轴,圆有()条对称轴。
4.以直角三角形的一条直角边为轴,旋转一周,可以得到一个();以长方形的一条宽或长为轴,旋转一周,可以得到一个()。
5.整数a是整数b的因数,a和b的最小公倍数是(),最大公因数是()。
6.圆柱的侧面积是94.2㎡,高是5m,体积是()。
7.一个数是由7个亿,6个千组成,这个数写作(),省略万位后面的尾数约是()。
8.如果数对(3,2)表示的位置是第3列第2行,那么数对(4,5)表示的位置是第()列第()行,第1列第6行所在的位置用数对()表示。
二、判断。
1.平移和旋转都只是改变图形的位置,而不改变图形的形状和大小。
()2.数对(1,3)和数对(3,1)表示同一个位置。
()3.半圆形纸片有无数条对称轴。
()4.把图形A按3:1放大得到图形B,则图形B的面积是图形A的3倍。
()5.甲地在乙地南偏东40°方向,则乙在甲地的北偏西40°方向。
()6、一个平行四边形和一个三角形等底等高,已知平行四边形比三角形的面积大7平方厘米,三角形的面积是(),平行四边形的面积是()。
7、小圆半径为2cm,大圆半径为3cm,小圆周长与大圆周长的比是():小圆面积与大圆面积的比是()8、把一个圆形纸片剪开,拼成一个宽等于半径,面积相等的近似长方形,这个长方形的面积是12.56平方厘米,原来圆形纸片的面积是()。
9、一个半圆面,半径是r,它的周长是()10、周长相等的正方形、长方形和圆,()的面积最大,()的面积最小。
11、将一个面积为8CM²的梯形按2:1放大,放大后图形的面积是()12、平行四边形的面积是三角形面积的2倍。
初一上册期末复习文言文语文试题1

初一上册期末复习文言文语文试题1一、文言文1.阅读下面的文段,回答问题。
狼蒲松龄①一屠晚归,担中肉尽,止有剩骨。
途中两狼,缀行甚远。
②屠惧,投以骨。
一狼得骨止,一狼仍从。
复投之,后狼止而前狼又至。
骨已尽矣。
而两狼之并驱如故。
③屠大窘,恐前后受其敌。
顾野有麦场,场主积薪其中,苫蔽成丘。
屠乃奔倚其下,弛担持刀。
狼不敢前,眈眈相向。
④少时,一狼径去,其一犬坐于前。
久之,目似瞑,意暇甚。
屠暴起,以刀劈狼首,又数刀毙之。
方欲行,转视积薪后,一狼洞其中,意将隧入以攻其后也。
身已半入,止露尻尾。
屠自后断其股,亦毙之。
乃悟前狼假寐,盖以诱敌。
⑤狼亦黠矣,而顷刻两毙,禽兽之变诈几何哉?止增笑耳。
(1)解释下列加下划线词语在句子中的意思。
①并驱如故________②顾野有麦场________③意暇甚________(2)把文中画线的句子翻译成现代汉语。
①少时,一狼径去,其一犬坐于前。
②禽兽之变诈几何哉?(3)下列对文章的分析与理解不正确的一项是()A.第①段叙述屠户遇狼的时间、地点和情况,寥寥几笔就勾画出屠户处境的危急,扣人心弦。
B.面对贪婪的恶狼,屠户虽然感到恐惧,但是他不迁就退让,先“投以骨”,以争取更有利的斗争时机。
C.屠户“奔倚”在积薪之下,利用麦场的有利地形,改变途中两狼并驱的局面,避免前后受敌的处境。
D.第⑤段是议论,点明故事的主题,阐明狼无论多么狡诈也不是人的对手,最终也会被人的勇敢与智慧打败。
2.阅读下面的文段,回答问题。
孟尝君有舍人而弗悦孟尝君有舍人①而弗悦,欲逐之。
鲁连②谓孟尝君曰:“猿猴错木据水,则不若鱼鳖;历险乘危,则骐骥③不如狐狸。
曹沫④奋三尺之剑,一军不能当;使曹沫释其三尺之剑,而操铫耨⑤与农夫居垅亩之中,则不若农夫。
故物舍其所长,之其所短,尧亦有所不及矣。
今使人而不能则谓之不肖教人而不能则谓之拙。
拙则罢之,不肖则弃之,使人有弃逐,不相与处,而来害相报者,岂非世之立教⑥首也哉!”孟尝君曰:“ 善。
信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。
七年级语文第一学期期末考试复习测试题(含答案)

七年级语文第一学期期末考试复习测试题(含答案)(全卷满分120分,考试时间150分)第Ⅰ卷(选择题,共33分)本卷共11小题,每小题3分。
每小题都给出A、B、C、D四个选项,其中只有一项正确,请考生用2B铅笔在答题卡上将选定的答案选项涂黑。
一、(15分)阅读下面诗歌,完成第1题观沧海曹操东临碣石,以观沧海。
水何澹澹,山岛竦峙。
树木丛生,百草丰茂。
秋风萧瑟,洪波涌起。
日月之行,若出其中;星汉灿烂,若出其里。
幸甚至哉,歌以咏志。
1.下面对这首诗的理解,不恰当的一项是(3分)A.曹操字孟德,东汉末期的政治家、军事家和诗人。
这首诗是他在征战乌桓胜利的归途中,登上碣石山,面对波涛汹涌的大海,看到如此宏伟的景象而写下的。
B.海面浩淼,水波澹澹,映入眼帘的是岛上的树木一丛丛生长着,百草丰盛繁茂;在萧瑟的秋风中,大海汹涌起伏;太阳和月亮不停运转,都好像是大海吐纳的;天上的云河,星光灿烂,它们都好像出自于大海广阔的胸间。
C. 这首诗描写海水荡漾,山岛竦峙,是动态描写;描写百草树木丛生,是静态描写。
显示了大海的辽阔和宏伟气象。
D.这首诗抒发了诗人宏伟的政治抱负和建功立业的雄心壮志,对前途充满信心的乐观气度和精神。
阅读下面两篇文言文,完成2—4题【甲】诫子书夫君子之行,静以修身,俭以养德。
非淡泊无以明志,非宁静无以致远。
夫学须静也,才须学也,非学无以广才,非志无以成学。
淫慢则不能励精,险躁则不能治性。
年与时驰,意与日去,遂成枯落,多不接世,悲守穷庐,将复何及!【乙】《论语十二章》节选子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”《学而》曾子曰:“吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?”子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩。
”子曰:“温故而知新,可以为师矣。
”子曰:“学而不思则罔,思而不学则殆。
”2.下面加点词的解释,不正确的一项是(3分)A. 非淡泊..无以明志。
【情景试题】2022-2023学年(语文)七下 期末复习:1

1.字音字形一、填空题1.(4分)根据拼音写汉字。
戈壁滩上常常风沙hū xiào,气温往往在零下三十多shè shì度。
核武器试验时大大小小突发的问题必层出不穷,稼先虽有“福将”之称,意外总是不能完全bì miǎn的。
1982 年,他做了核武器研究院院长以后,一次井下突然有一个信号测不到了,大家十分jiāo lǜ,人们劝他回去,他只说了一句话:“我不能走。
”2.(5分)给加点字选择正确的读音或根据拼音写出汉字。
(1)(1分)若有人说了什么可笑的话,鲁迅先生笑得连烟卷都拿不住了,常常是笑得咳sou()起来。
(2)(1分)鸡汤端到旁边用调羹()( A . gēng B . gēn)舀了一二下就算了事。
(3)(1分)青年人写信,写得太草率()(A . lǜ B . shuài),鲁迅先生是深恶()(A . è B . wù)痛绝之的。
(4)(1分)保姆总是吩()(A . fēng B . fēn) 咐他说:“轻一点走,轻一点走。
”(5)(1分)若小细绳上有一个gē da(),也要随手把它解开的。
3.根据拼音写出相应的词语。
(1)像春蚕在jǔ jué()桑叶,像野马在平原上奔驰(2)钻之弥坚,越坚,钻得越qiè ér bù shě()。
(3)鲁迅先生笑得连烟卷都拿不住,常常是笑得ké sòu()起来(4)我们民族的伟大精神,将要在你的bǔ yù()下发扬滋长!二、综合题4.(6分)阅读下面选段,完成小题。
半夜里,忽然醒来,才觉得寒气逼人,刺入肌骨,浑身打着战,把毯子juǎn得更紧些,把身于quán起来,还是睡不着。
天上闪烁的星星好像黑色幕上缀着的宝石,它跟我们这样地接近哪!黑的山峰像巨人一样矗立在面前,四围的山把这山谷包围得像一口井。
上边和下边有几堆火没有熄,冻醒了的同志们围着火堆小声地谈着话,除此以外,就是寂静,耳朵里有不可捉摸的声响,极远的又是极近的,极洪大的又是极细切的,像春蚕在______桑叶,像野马在平原上______,像山泉在______,像波涛在______。
应用文写作期末考试复习题(1)

应用文写作期末考试复习题(1)应用文测验试题一:总论二、单项选择题1.下列关于行政机关公文成文日期的书写哪项是正确的()A 、 2003 年 7 月 8 日 B、二 OO 三年七月八日 C、二 00 三年壹月五日 D、二 00 三年四月标准答案: b2. 湖南省国家税务局向湖南省人民政府各厅、局、委、办制发(主送)的公文属于()A 、上行文 B、下行文C、平行文D、呈请性文件标准答案: c3. 对 " 李国玉是一个爱学习、肯钻研的人" 分析正确的是()A 、运用了说明 B、运用了议论C、运用了描写 D 、运用了抒情标准答案: b4.在上行文中,常常要涉及到上下级关系,因此在使用称谓时,经常要用到人称代词,下列词语中()属于第三人称。
A、我B、本C、贵D、该标准答案: d5. 下列标题中有错误的一个是()A、国家税务总局关于全面加强税收执法监督工作的决定B、 XX 市国家税务局关于2002 年 5 月份税收收入情况的通报C、 XX 区国家税务局申请建设工程规划许可证的函D、国家税务总局关于在全国税务系统进一步推行岗位责任制的意见标准答案: c6." 为要 " 、 "为盼 " 属于应用文结构用语中的()A 、开头用语B、结尾用语C、过渡用语D、综合用语标准答案: b7. 受双重领导的机关上报公文应()A 、写明两个主送机关B、只写一个主送机关C、分头主送D、根据情况需要而定标准答案: b8. " 现将有关事项通知如下" 属于应用文结构用语中的()A 、开头用语B、结尾用语C、过渡用语D、综合用语标准答案: c9. 当问题重大,确急需直接上级和更高层次的上级机关同时了解公文内容时,可采用()A 、越级行文B、直接行文C、多级行文D、同时行文标准答案: c10. 在有些公文中,要大量的运用数据说明问题,那么文中的数字则应用()表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名 学号:
…………………………密………………封………………线…………………………
四年级上学期数学期末综合卷(三)
时间:100分钟 满分:100分
.
图中共有(
15.因数末尾有2个0,积的末尾也至少有2个0。
( ) A .800050
B .800005
C .805000
17.下列几种情况,两条线互相垂直的是( )。
A .两条直线相交 B .不平行的两条直线 C .直角的两条边
18.要使算式45×2□的积的末尾有0,□中有( )各填法。
A .2
B .3
C .5
19.如果□×○=△,那么下列算式正确的是( )。
A .□÷△=○
B .△÷□=○
C .□÷○=△
20.平行四边形可以作( )条高。
A .1
B .2
C .无数
22.用竖式计算. 493×17 104×80 526÷41
727÷56(验算) 1564÷28(验算) 95×305(验算)
五、操作题。
(每题3分,共6分)
23.过两条相交直线外的一点画两条直线,分别与这两条直线垂直. 24.画一个平行四边形,并作出它的底边上的高.
26.国庆节期间,中南商场开展优惠活动.“洁丽”牌洗衣粉每袋原价4元,现在买3袋送一袋,李阿姨一次买3袋,每袋便宜了多少钱?
27.轮船从甲港顺水航行开到乙港,以每小时行25千米的速度行了16小时.回来时逆水航行,每小时行20千米,回来要用多少小时?
28.章叔叔花240元钱批发了80千克香蕉,以每千克4元的价钱卖出了60千克.剩下的每千克卖3元,章叔叔赚了多少钱?(用两种方法计算)
29.用面包机烤面包时,第一面烤2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟,小勤的面包机一次只能放2片,他每天早上吃3片面包,至少需要烤多少分钟?
30.四年级师生220人租车去参观科技馆.
(1)如果只租甲种车或只租乙种车,各需要付多少元租金? (2)怎样安排租车,才能使租金最少?最少用多少元?
31.只有蓝、红、黄三个键,蓝键为“输入/删除”键,按它一下可输一个数,再按它一下则将显示屏上的数删除;每按一下红键,显示屏上的数变为原来的2倍;每按
一下黄键,显示屏上的数的末位自动消失,现在先按蓝键输入21,请你设计一个操作程序,要求:(1)操作过程中只能按红键和黄键; (2)按键次数不超过6次; (3)最后输出的数是3.。