一次函数课题学习——选择方案

合集下载

一次函数,方案选择

一次函数,方案选择

课题学习选择方案教学设计教学目标一、知识技能1、能根据所列函数的表达式的性质,选择合理的方案解决问题。

2、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。

二、过程方法结合实际问题的讲解,培养学生收集、选择、处理数学信息,并作出合理的推断或大担的猜测的能力,提高学生在实际问题情景中,建立数学模型的能力。

三、情感态度价值观1.经历提出问题,收集和整理数据,获取信息,处理信息(画出函数的图象)形成如何决策的具体方案。

2.让学生感受一次函数的图象及性质在日常生活当中的妙用,从而提高学生学习兴趣,在数学学习中获得成功体验,建立自信心。

教学重点建立数学模型,得出相关的一次函数的图象。

教学难点如何从一次函数图象中收集、处理实际问题中的数学信息。

教学过程教学过程一、出示问题情境,导入新课做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学的角度分析,涉及变量的问题常用到函数.同学们通过讨论下面两个问题,体会如何运用一次函数选择最佳方案.二、自主学习,探究新知(一)多媒体展示问题一:下表给出A ,B ,C 三种上宽带网的收费方式:选取哪种方式能节省上网费?学生带着以下问题,自主学习,不解之处进行讨论: 1.哪种方式上网费是会变化的?哪种不变? A 、B 会变化,C 不变2.在A 、B 两种方式中,上网费由哪些部分组成? 上网费=月使用费+超时费3.影响超时费的变量是什么?所以设 上网时间为x 小时 . 上网时间4.这三种方式中有一定最优惠的方式吗? 没有一定最优惠的方式,与上网的时间有关5请同学们填写下表,思考如何用函数关系式表示方式A ,B 的总费用?解:设 , 表示方案A 的收费金额. 表示方案B 的收费金额. 表示方案C 的收费金额.⎩⎨⎧=1y化简,得⎩⎨⎧=2y收费 方式 月使用费/元收费金额 超时时间 (单位:分) 未超时时(x 的取值范围 )收费金额超时时(x 的取值范围 )收费金额A B 130, (025)345. (25)x y x x ≤≤⎧=⎨-⎩>30 当0≤x ≤25时,30+0.05×60(x -25)50当0≤x ≤50时,50+0.05×60(x -50)化简,得你能在同一直角坐标系中画出它们的图象吗?由实际意义得x 0,在图(1)中画出y 1,y 2,y 3的图像.结合函数图象与解析式选择哪种方式能节省上网费?考虑(1)x 取何值时,y 1最小.(2)x取何值时,y 2最小.(3)x 取何值时,y 3最小.(1)当上网分钟时,选择方式A 最省钱.(2)当上网分钟时,选择方式B 最省钱.(3)当上 分钟时,选择方式C 最省钱.方法总结:解决含有多个变量的问题时, 1、建立数学模型——列出两个函数关系式2、通过解不等式或利用图象来确定自变量的取值范围。

第 19 章《一次函数》 导学案及单元计划

第 19 章《一次函数》 导学案及单元计划

第 19 章《一次函数》一、教材分析:本单元教学的主要内容:函数的概念与图像;一次函数;课题学习:选择方案。

二、学情分析:根据八年级下学期,学生易浮躁,厌学情绪比较高,加上函数概念涉及运动变化,抽象性较强,因此,在目前的学生的状态下,并且初次学习,接受并理解它是有一定的难度;突破这个难度的办法是由具体例子逐步过渡到抽象定义,教学中开始阶段不应急于给出定义,而需要让学生经历分析具体问题中变量之间存在什么样的具体对应关系的过程,并引导学生发现这些关系的共同之处为:都是单值对应。

三、教学目标:1.知识与技能(1)了解常量、变量的意义和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.(2)能确定简单实际问题中函数自变量的取值范围,并会求函数值.(3)能根据已知条件确定它们的表达式,会画它们的图像,能结合图像讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.(4)以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分和解决实际问题的能力.2.过程与方法(1)结合实例,对事物的运动变化进行数量化讨论,先引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,给出函数的解析式的意义.(2)以实际问题为情境,引出正比例函数和一次函数的概念、图像和增减变化规律.(3)通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对方程等内容的认识,构建和发展相互联系的知识体系.3.情感、态度与价值观以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立函数模型表示变量之间的单值对应关系,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.四、教学重点1.变化与对应下的函数定义,函数的解析式和自变量的取值范围;2.正比例函数和一次函数的概念、解析式、图形和性质.五、教学难点:对于函数中的“运动变化”的理解六、教学关键:1.重视数学概念中蕴含的思想,引导学生从“运动变化和联系对应”的角度认识函数.2.借助实际问题情境,引导学生由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想.3.引导学生重视数形结合的研究方法.八、单元课时划分本单元教学时间约需 24 课时,具体分配如下: 19.1 函数 7 课时19.2 一次函数 12 课时19.3 课题学习选择方案 1 课时教学活动、习题课、小结 4 课时五、达标检测1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+502.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量3.在一个变化过程中,__________________的量是变量,•________________的量是常量.4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.x与y___________.5.长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为y=_______,则这个问题中,___________常量;_________是变量.6.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)五、达标检测1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+502.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量3.在一个变化过程中,__________________的量是变量,•________________的量是常量.4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.x与y___________.5.长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为y=_______,则这个问题中,___________常量;_________是变量.6.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)五、达标检测写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.五、达标检测写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明在食堂吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多长时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?五、达标检测1.若点p在第二象限,且p点到x轴的距离为3,到y轴的距离为1,则p点的坐标是()A.(-1,3) B.(-3,1) C.(3,-1) D.(1,-3)2.下列函数中,自变量取值范围选取错误的是()A.中,x取全体实数 B.中,C.中, D.中,3、下列各曲线中哪些表示y是x的函数?(提示:当x=a时,x的函数y只能有一个函数值)4.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里.图中表示小明的父亲离家的时间与距离之间的关系是().5.某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为().五、达标检测甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.五、达标检测甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.四、达标测试:1、汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为___________________.y是x的_______函数。

课题学习 一次函数中的方案选择

课题学习   一次函数中的方案选择
A城有肥料200吨
C乡需要肥料240吨
每吨20元
B城有肥料300吨
D乡需要肥料260吨
每吨24元
思考:影响总运费的变量有哪些?由A、B城分别运往C、D乡的
肥料量共有几个量?这些量之间有什么关系?
情景引入
喜欢打电话的同学可能会遇到下面这种问题,如:
1)还没到月底的时候免费的通话分钟数没有了。
2)月末的时候考虑我该换什么样的套餐合适呢?
x
(3)结合函数解析式及其图像说明水的最佳调运方案。
水的最小调运量为多少?
情景引入
你能在同一直角坐标系中画出它们的图象吗?
(0 x 25)
30,
y1
3x 45. ( x>25)
(0 x 50)
50,
y2
3x 100. ( x>50)
y3=120 (x≥0)
Goodbye~
感谢聆听,下期再会
得的费用相同,每月通话时间少于110分钟时,选择B
类收费比较适当.
课堂测试
某电脑经销商,今年二,三月份型和型电脑的销售情况,如下表所示:
(1)直接写出每台型电脑和型电脑的销售利润分别为____________;
(2)该商店计划一次购进两种型号的电脑共100台,其中型电脑的进货量不超过型电脑的2倍.设购进型电脑
10840·
小值,最小值为
y=4x+10040
(0≤x≤200)
10040·
4×0+10040=10040,
所以这次运化肥的
方案应从A城调往C
乡0吨,调往D乡
200吨;从B城调往
·
C乡240吨,调往D
o
x
200

“一次函数”课题学习方案选择教学设计

“一次函数”课题学习方案选择教学设计

数学 问题 . 我们一起看 看题 目中的数量关 系 ,师 画四 ( 点图 , 生读题并填充 四点图 )
他做几道题 . 同学们 , 我们也来做一做?
() 1购买一些饮 料 , 一瓶 饮料单 价 3 5元 , 买 . 购
瓶饮料需支付 Y元 . 可列函数解析式—
2 一 4



() 2购买 一些饮 料和 一些 面包 ( 饮料 和面 包共 1 O
质, 尤其问题 4让学 生进 一步 感悟并 总结 比例 系数 k
的 大 小 与 函数 值 的 最 值 的 关 系. 一
运用 四点图和表格分析 多个变量 的实 际问题 , 列 出函数关系式 , 运用 函数的性质得到最佳方案 .
四 、 学 难点 教
2 探索发现 , 出模 型. . 列 故事情节 2 小宋 也顺 利做 出了这 几道题 , 正当 他暗 自纳 闷: 数学题 和物流公 司有何相 干?叔叔 要他

中 小 学 数 学 ・中学版) (
思考 : ‘
初中 讨论 1 “ 当 为 一10时 总 运 费 y最 小 ” “ 为 0 ,
1 总运费 由哪几部分构成 ? .
5O时总运费 l最小” O , 是否 正确? 讨 论 2 计算 为 0 为 10 为 20时 y也就是总 、 0、 0 运 费等 于多少?这三种情况哪个总运费是最小 的?
大 而
这节课是人教 版八年级 教材 第 1 4章一 次函数 中 安排的最后一个内容. 为进 一步提 高学生实践 意识 与

个, 可列 函数解析式—
所 以 Y随 的 增



综合应用数学知识 的能力 , 教材安排 了这一内容. 这节

一次函数课题学习--选择方案市公开课获奖课件省名师示范课获奖课件

一次函数课题学习--选择方案市公开课获奖课件省名师示范课获奖课件
买灯旳方案有三种:
1. 一种节能灯,一种白炽灯;
2. 两个节能灯;
3. 两个白炽灯.
练习
1、如图所示,L1反应了某企业产品旳销售收入 和销售数量旳关系, L2反应产品旳销售成本与 销售数量旳关系,根据图象判断企业盈利时销
售量(B)
A、不不小于4件
y/元
L 1
B、不小于4件
400
L2
C、等于4件
300 200
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
一次函数y = 5x +1275旳值 y随x 旳增大而增大,所以当 x=1时y 有最小值,最小值为5×1+1275=1280,所以这次 运水方案应从A地调往甲地1万吨,调往乙地14-1=13(万吨 从B地调往甲地15-1=14(万吨),调往乙地1-1=0(万吨)
14.4课题学习 选择方案 怎样调水
解:(1)设派往A地域x台乙型收割机, 每天取得旳 租金为y元则,
派往A地域(30-x)台甲型收割机, 派往机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
即当照明时间等于1900小时,购置节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯旳费用y1元表达,白炽灯旳费用y2 元表达,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
若y1< y2 ,则有
60+0.6×0.01x <3+0.6×0.06x
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水

一次函数课题学习:选择方案

一次函数课题学习:选择方案

鸡西市第十九中学学案
、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(
话时间x(min)与通话费y(元)的关系如图所示:
分别求出通话费1y(便民卡)2(如意卡)与通话时间x
系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜?6、如图一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)
下列问题:
⑴请分别求出表示轮船和快艇行驶过程的函数解析式。

范围)
⑵轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
⑶问快艇出发多长时间赶上轮船?
鸡西市第十九中学学案
鸡西市第十九中学学案。

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

6.(20分)在乡村道路建设的过程中,甲、乙两村之间需要修建水泥路,它们准备 合作完成.已知甲、乙村分别需要水泥70 t,110 t,A,B两厂分别可提供100 t,80 t水泥,两厂到两村的运费如下表.设从A厂运往甲村水泥x t,总运费为y元.
(1)求y与x之间的函数关系式; (2)请你设计出运费最低的运送方案,并求出最低运费.
y=20x, y=10x+100,
解得xy= =12000,比较合算;②当入园次数等于 10 次时,选择两种消费卡费用一 样;③当入园次数大于 10 次时,选择乙消费卡比较合算
4.(12分)为了更好地运用信息技术辅助教学,某校计划购买进价分别为3 500 元/台、4 000元/台的A,B两种型号的笔记本电脑共15台.设购进A型笔记本电脑x 台,购买这两种型号的笔记本电脑共需的费用为y元.
数学 八年级下册 人教版
第十九章 一次函数
19.3 课题学习 选择方案
1.(4分)一家电信公司提供了有、无月租费两种上网收费的方式供用户选择, 这两种收费方式所收取的上网费用y(元)与上网时间x(min)之间的关系如图所示, 则下列说法错误的是( C )
A.图象甲描述的是无月租费的收费方式 B.图象乙描述的是有月租费的收费方式 C.当每月的上网时间为350 min时,选择有月租费的收费方式更省钱 D.当每月的上网时间为500 min时,选择有月租费的收费方式更省钱
(1)求y与x之间的函数解析式; (2)若购买的B型笔记本电脑的数量不少于A型笔记本电脑数量的2倍,请你帮该 校设计出一种费用最省的方案,并求出该方案所需的费用. 解:(1)由题意,得y=3 500x+4 000(15-x)=-500x+60 000 (2)由题意,得15-x≥2x,解得x≤5,∵-500<0,∴当x=5时,y有最小值,且 y最小值=-500×5+60 000=57 500,∴当该校购买A型笔记本电脑5台,B型笔记 本电脑15-5=10(台)时费用最省,所需的费用为57 500元

《课题学习 选择方案》教案精品 2022年数学

《课题学习 选择方案》教案精品 2022年数学

19.3课题学习选择方案1.稳固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价根底上打八折优惠,乙旅行社那么推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮助分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费〞,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.此题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的根本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按方案20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,假设要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x-y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,那么有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),那么W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,那么x =8.应选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最正确方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费工程及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费工程及收费标准表 运输工具 运输费单价: 元/(吨·千米)冷藏单价: 元/(吨·时) 固定费用: 元/次汽车 2 5 200 火车1.652280货运收费工程及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费工程及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.假设y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________;(2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy+1,17m 2n ,2x 2-x -5,a 7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项. 【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】与多项式有关的探究性问题假设关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n -1)x-1不含二次项和一次项,∴m=0,n-1=0,那么m=0,n =1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《课题学习选择方案》教学设计
内蒙古呼和浩特市第三十五中学郭峻嵘
、内容和内容解析
1.内容
用函数思想解决方案选择问题—选择哪种上网收费方式省钱?
2.内容解析
本课是在学习了函数概念、一次函数有关知识后,通过学生熟悉的宽带上网收费方式的选择,
让学生经历体会费用随时间的变化关系是一次函数的关系,确定实际数据整理成函数的模
型,即建立了数学模型,从而利用函数图像求数学模型的解,还可以比较几个一次函数的变
化率来解决方案选择问题,实现利用数学知识解决实际问题的方法.本课是明确给出多种
方案,要求选择使问题解决最优的一种.
综上所述,本节课教学的重点是:应用一次函数模型解决方案选择问题.
二、目标和目标解析
1.目标
(1)会用一次函数知识解决方案选择问题,体会函数模型思想;
(2)能从不同的角度思考问题,优化解决问题的方法;
(3)能进行解决问题过程的反思,总结解决问题的方法.
2.目标解析
目标(1)要求能根据问题情景建立一次函数模型,并可以比较几个一次函数的变化率,应
用一次函数的性质和图像解决问题,从而感受到函数模型的应用价值.
目标(2)要求能从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用
函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.目标(3)要求在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和
方法进行总结提炼.
三、教学问题诊断分析
八年级学生已经学会了用方程和不等式来解决生活中的简单的实际问题,但是用综合应用能
力有待加强。

特别是由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其
对应关系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,时间一长就不愿意去
尝试了.在这方面要给他们创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣.本课内容是学生熟悉的宽带上网收费方式的选择,如何选择,用什么方法
选择很重要,特别是如何从数学的角度去分析.
本课教学的难点是:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化.
四、教学过程
1.创设情境,提出问题
做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是
非常必要的。

应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各
种方案,作出合理的选择。

问题:你能说说生活中需要选择方案的例子吗?
师生活动:学生各抒已见,引出如何选择上网收费方式的问题
设计意图:通过这一环节,让学生体会到选择方案问题在生活中普遍存在,对各种方案运用数学方法作出分析,理性选择最佳方案是必要的,具有现实意义。

2.实例分析,规划思路
在选择方案时,怎样从数学角度进行分析,这就涉及变量的问题,常会用到函数.请看下面问题:
例 1 某医药公司要把药品运往外地,现有两种运输方式可供选择,方式一:使用快递公
司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元。

(1)请分别写出邮车、火车运输的总费用y1(元),y2(元)与运输路程x(千米)之间的函数关系式;
(2)你认为选用哪种运输方式较好?为什么?
问题1:“选择哪种运输方式”的依据是什么?
师生活动:学生讨论得出需要知道两种运输方式的费用分别是多少,费用最少的就是最佳方案.
设计意图:让学生明确问题的目标.
问题2:两种运输费用的大小关系是否确定?
学生活动:不确定,分三种关系。

设计意图:让学生明确问题的目标.
解:(1)邮车运输y1=4x+400
火车运输y2=2x+820
(2)当y1=y2时,即4x+400=2x+820, 解得x=210,
所以当运输路程等于210千米时,y1=y2,两种运输方式一样
当y1<y2时,即4x+400<2x+820, 解得x<210,
所以当运输路程小于210千米时,y1<y2,选择邮车运输较好;
当y1>y2时,即4x+400>2x+820, 解得x>210,
所以当运输路程大于210千米时,y1>y2,选择火车运输较好。

例2:怎样选取上网收费方式?下表给出A、B、C三种上宽带网的收费方式收费方式月使用费/元包时上网时间/h 超时费/(元.min)
A 30 25 0.05
B 50 50 0.05
C 120 不限时
选取哪种方式能节省上网费?
问题1:“选择哪种方式上网”的依据是什么?
师生活动:学生讨论得出需要知道三种方式的上网费分别是多少,费用最少的就是最佳方案.设计意图:让学生明确问题的目标.
问题2:哪种方式上网费是会变化的?哪种不变?
师生活动:学生讨论得出方式A、B会变化;方式C不变.
追问1:方式C上网费是多少钱?
追问2:方式A、B中,上网费由哪些部分组成的?
师生活动:老师引导学生分析得出:
(1)当上网时间不超过规定时间时,上网费用=月使用费;
(2)当上网时间超过规定时间时,上网费用=月使用费+超时费.
追问4:影响方式A、B上网费用的因素是什么?
师生活动:学生独立思考得出上网时间是影响上网费用的因素.
问题3:你能用适当的方法表示出方式A的上网费用吗?
师生活动:学生小组讨论得出结论.
方式A:当上网时间不超过25h时,上网费=30元;
当上网时间超过25h时,上网费=30+超时费
即上网费=30+0.05×60×(上网时间-25)
追问1:设上网时间为t h,上网费用为y元,你能用数学关系式表达y与t的关系吗?
师生活动:老师引导,注意时间单位统一,得出结论:当0≤t≤25时,y=30;
当t>25时,y=30+0.05×60(t-25)即y=3t-45

问题4:类比方式A,你能用数学关系式表示出方式B中上网费用y与上网时间t的关系吗?师生活动:学生思考后,小组讨论,得出结论,老师适时引导评价.
设计意图:让学生从粗到细的感知问题的整体结构和数量关系,感知上网费用随上网时间的
变化而变化,并把这两个变量作为研究对象,教师引导学生最终把问题转化为一次函数问题.3.建立模型,解决问题
问题4:你能把上面的问题描述为函数问题吗?
师生活动:学生讨论后建立函数模型,把实际问题转化为函数问题.
设上网时间为t h,方式A上网费用为元,方式B上网费用为元,方式C上网费用为
元,则;;,比较、、的大小.
设计意图:让学生在感知问题、分析问题基础上建立一次函数模型,把实际问题转化为一次函数的问题.
追问1:用什么方法比较函数、、的大小呢?
师生活动:学生独立思考.有的学生会提出用不等式或方程考虑当t满足什么条件时,>,=,<,分组讨论后,学生会发现由于、是分段函数,用不等式比
较麻烦,此时教师引导学生借助函数图象来分析问题.
由函数图象可知:
(1)当时,函数、的图像有一个交点,求出此
交点的横坐标,即=时,3t-45=50,解方程,得;
(2)当时,函数的图像在函数图像的下方,
即<时,方式A比方式B省钱;
(3)当时,函数的图像在函数图像的上方,即>,方式B比方式A省
钱;
(4)当时,函数、的图像有一个交点,求出此交点的横坐标,即=时,3t-100=120,解方程,得t=;
(5)当t>时,函数的图像在函数图像的上方,即>,方式C比方式B
省钱.
设计意图:上述分段函数问题,需要在画出函数图象观察函数图象的基础上对上网时间进行
分段讨论,让学生感受函数图象与方程、不等式数形结合的方法.
问题5:上述比较函数值大小结果的实际意义是什么?
师生活动:教师引导学生解释上述结果的实际意义.
当上网时间不超过31小时40分钟时,选择方式A最省钱;
当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;
当上网时间超过73小时20分钟时,选择方案C最省钱.
设计意图:让学生解释函数模型中解的实际意义,从而解决实际问题.
4.小结
用一次函数解决实际问题的基本思路:
(1)明确问题的目标;
(2)发现问题中数量之间的关系;
(3)找出问题中变量之间的函数关系;
(4)函数问题的解的实际意义.
设计意图:提高学生反思过程的针对性,展示函数的应用价值,突出建立数学模型的思想方
法和实际意义.
五、目标检测设计
如图,、分别表示一种白炽灯和一种节能灯的费用y元(费用=灯的售价+电费)与使用时间(小时)的函数图象,若两种灯的使用寿命都为2000小时,照明效果一样.
(1)根据图象分别求出、的解析式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)某用户计划照明2500小时,现在购买了一个白炽灯和一个节能灯,请你为该用户设计一个最省钱的用灯方法.
设计意图:评价学生利用一次函数模型解决方案选择问题的水平.。

相关文档
最新文档