信号与系统实验-信号抽样与内插

合集下载

信号与系统实验四实验报告

信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。

时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。

非周期离散信号的频谱是连续的周期谱。

计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。

三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。

信号与系统采样实验报告

信号与系统采样实验报告

实验5采样采样定理给定了一些条件,在这些条件之下,一个带限的连续时间信号能够完全用它的离散样本表示。

所得到的离散时间信号)(][nT x n x c =包含了在连续时间信号中的全部信息。

只要这个连续时间信号是充分在频率上带限的,即T j X c π≥Ω=Ω,0)(。

当满足这一条件时,原连续时间信号能够完全用样本][n x 之间的内插予以重建。

如果][n x 满足采样定理,就有可能完全在离散时间域中处理][n x 而得到另一个序列,这个序列本该以不同的采样率对)(t x c 采样而得到。

这个处理称为采样率转换。

离散时间系统的灵活性对于连续时间LTI 系统的实现提供了一种强有力的手段,这就是连续时间信号的离散时间系统处理。

在这一技术中,一个带限的连续时间输入被采样,用一个离散时间系统所得到的样本,然后将这个离散时间系统的输出样本进行内插,给出连续时间输出信号。

本章练习将研究涉及信号采样和重建中的许多问题。

注意,该章用Ω代表连续时间频率变量,而用ω代表离散时间频率变量。

§5.1由欠采样引起的混叠目的这个练习讨论信号经采样后其频谱的变化以及由于欠采样而在而在带限内插重建信号上引起的混叠效果。

相关知识如果一个连续时间信号)(t x 每隔T 秒采样一次,那么信号的样本就形成了离散时间序列)(][nT x n x =。

奈奎斯特采样定理说的是,如果)(t x 的带宽小于s π=Ω2,即2,0)(s c j X Ω≥Ω=Ω,那么)(t x 就完全可以由它的样本)(nT x 予以重建。

带限内插或信号重建是最容易将)(t x 首先乘以冲激串后而看出来的 ∑∞-∞=-=n p nT t nT x t x )()()(δ 用一个截止频率2s Ω的理想低通滤波器对)(t x p 滤波,就能从)(t x p 中将)(t x 恢复出来。

定义)(t x r 为低通过滤)(t x p 而得到的重建信号。

若)(t x 的带宽大于2s Ω,那么样本)(nT x 就不能完全确定)(t x ,)(t x r 一般说来不等于)(t x 。

信号和系统实验_信号抽样和内插

信号和系统实验_信号抽样和内插

武汉大学教学实验报告电子信息学院电子信息学院专业 2014 年 11 月 27 日实验名称信号的抽样与内插指导教师姓名 ** 年级大三学号 201230******* 成绩6)画出各信号的频谱图,程序代码如下:N=length(time); %离散点的个数Ts=(time(N) - time(1))/N; %抽样周期m=floor(N/2); %因为DFT是对称的,只需要取一半 Ws=2*pi/Ts;W=Ws*(0:m)/N;F=fft(z1,N); FF=F(1:m+1); F11=abs(FF);plot(W,F14,'b',-W,F14,'b');%axis([-500,500,0,750])title('恢复后信号的幅频特性');xlabel('频率(Rad/s)');1.输入信号为1Hz的正弦波,波形如左下图,经过1.1Hz低通滤波后的波形如右下图在临界抽样频率2Hz下的到的抽样波形如左下图,经过1.1Hz滤波后得到的波形如右下图临界抽样频率下的频谱如下图2.当抽样频率变为1.5Hz时,为欠抽样,抽样波形如左下图,经过1.1Hz低通滤波后得到的波形如右下图1.5Hz欠抽样情况下得到的频谱如下图3.当抽样频率变为5Hz时,为过抽样,抽样波形如下图经过1.1Hz低通滤波后得到的波形如右下图过采样的频谱如下图4.当信号波形为方波时,左下图为1Hz方波信号波形,右下图为经过10Hz滤波后方波的波形,经过预滤波后,方波中高频成分被滤除,波形变得有些失真,但是和最后抽样滤波的结果更加近似左下图为没有经过滤波的方波被20Hz抽样信号抽样,经过10Hz低通滤波器后的波形如右下图,抽样滤波时在从抽样信号中提取方波信号时方波中的高平成分也被滤除,因而最终结果更加接近于预滤波后的方波波形。

波形的频谱如下图5.当信号波形为锯齿波时,左下图为1Hz锯齿波信号波形,右下图为经过10Hz滤波后锯齿波的波形,经过预滤波后,方波中高频成分被滤除,波形变得有些失真,但是和最后抽样滤波的结果更加近似下图1 为没有经过滤波的锯齿波被20Hz抽样信号抽样,经过10Hz低通滤波器后的波形如下图2 ,抽样滤波时在从抽样信号中提取方波信号时锯齿波中的高平成分也被滤除,因而最终结果更加接近于预滤波后的锯齿波波形。

信号与系统实验报告1抽样定理

信号与系统实验报告1抽样定理

本科实验报告课程名称:信号与系统实验项目:抽样定理实验地点:北区博学楼机房专业班级:电信1201 学号: ******** 学生姓名:指导教师:***一、实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理,加深对抽样定理的认识和理解。

二、原理说明:离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号fs(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:fs(t)=f(t)×s(t)对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限个经过平移的原信号频谱。

平移后的频率等于抽样频率fs及其各次谐波频率2fs、3fs、4fs、5fs......。

正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复为原信号。

只要用一个截止频率等于原信号频谱中最高频率fmax的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

但原信号得以恢复的条件是fs>2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

为了实现对连续信号的抽样和抽样信号的复原,可用以下实验原理方案:图1-3 抽样定理实验方框图三、实验内容及步骤:1、方波信号的抽样与恢复。

1)观察方波信号的抽样。

调节函数信号发生器,使其输出频率分别为1KHZ、3KHZ,s(t)的频率分别置3.9KHz、15.6KHz、62.5KHz,观察抽样后的波形,并记录之。

方波原始图62.5KHz的抽样图2)观察恢复后的波形。

《信号与系统实验》信号的采样与恢复(抽样定理)实验一

《信号与系统实验》信号的采样与恢复(抽样定理)实验一

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。

s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。

图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s 2B,其中f s为抽样频率,B为原信号占有的频带宽度。

而f min=2B为最低抽样频率又称“柰奎斯特抽样率”。

当f s<2B时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2B,恢复后的信号失真还是难免的。

图5-2画出了当抽样频率f s>2B(不混叠时)f s<2B(混叠时)两种情况下冲激抽样信号的频谱。

t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2B 、f s =2B 、f s <2B 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。

信号与系统实验报告2

信号与系统实验报告2

实验二:信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验预习要求1、复习《信号与线性系统》中关于抽样定理的内容2、认真预习本实验内容,熟悉实验步骤三、实验原理和电路说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号fs(t),可以看成连续信号f(t)和一组开关函数s(t)的乘积。

s(t)是一组周期性窄脉冲,见实验图2-1,Ts称为抽样周期,其倒数fs=1/Ts称抽样频率。

图2-1 矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率fs及其谐波频率2fs、3fs……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)/x规律衰减,抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是fs≥2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而f min=2B为最低抽样频率又称“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

图2-2画出了当抽样频率fs>2B (不混叠时)及fs>2B (混叠时)两种情况下冲激抽样信号的频谱。

(b) 高抽样频率时的抽样信号及频谱(不混叠)(C)低抽样频率时的抽样信号及频谱(混叠)图2-2 冲激抽样信号的频谱实验中选用fs<2B、fs=2B、fs>2B三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率fs必须大于信号频率中最高频率的两倍。

信号与系统 抽样定理实验

信号与系统 抽样定理实验

信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m 三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]);title('Ô­Á¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2* pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F) )]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。

信号与系统实验报告——采样(含程序)

信号与系统实验报告——采样(含程序)

电 子 科 技 大 学实 验 报 告学生姓名:苏晓菁 学 号: 2804301026 指导教师:张鹰 一、实验室名称:信号与系统实验室 二、实验项目名称:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.6-1所示。

可以证明,奈奎斯特采样定理仍然成立。

x )(t P T)图3.6-1 实际采样和恢复系统采样脉冲:Tsπω2=,其中,2/)2/sin(τωτωτs s k k k Ta =,T <<τ。

采样后的信号:∑∞-∞=-=−→←k s SFS k j X Tj Xt x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj Hr由采样后的()()2()FT T k s k p t P j a k ωπδωω+∞=-∞←−→=-∑信号)(txS 恢复原始信号)(tx。

四、实验目的:目的:使学生通过采样保持电路理解采样原理。

使学生理解采样信号的恢复。

五、实验内容:实验内容(一)、采样定理验证实验内容(二)、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11、高通滤波器模块U21、PC机端信号与系统实验软件、+5V电源七、实验步骤:实验内容(一)、采样定理验证1、连接接口区的“输入信号1”和“输出信号”,如图1所示。

图12、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz”。

按“F4”键把采样脉冲设为10kHz。

3、观察原始正弦波。

4、按图2的模块连线示意图连接各模块。

5、观察采样后的波形。

6、用截止频率为3kHz的低通滤波器U11恢复采样后的信号。

按图3的模块连线示意图连接各模块。

图37、观察恢复后的波形。

实验内容(二)、采样产生频谱交迭的验证 重复实验内容(一)的实验步骤;注意在第2步中正弦波的频率仍设为“2.6kHz ”后,按“F4”键把采样脉冲频率设为“5kHz ”;在第6步中用3kHz 的恢复滤波器(U11)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学教学实验报告
电子信息学院电子信息学院专业 2014 年 11 月 27 日实验名称信号的抽样与内插指导教师
姓名 ** 年级大三学号 201230******* 成绩
四、实验内容与方法
设计信号x(t) = sin(2πft),f = 1Hz的抽样与恢复的实验,实验步骤如下:1)在 MATLAB 命令窗口中输入“simulink”,启动Simulink Library Browser;
2)在 Simulink Library Browser 中,新建一个模型文件,编辑模型文件,建立如图2 所示的抽样与内插的仿真模型,并保存为sample.mdl;
3)分别在欠采样与过采样条件下,配置各模块的参数(如信号源的频率,抽样脉冲的间隔,低通滤波器的截止频率等)。

4)在模型文件的菜单中选择 Simulation->Start,运行在欠采样、与过采样条件下的仿真模型;
5)仿真结束后,打开示波器,观察在欠采样与过采样条件下的仿真结果。

1.输入信号为1Hz的正弦波,波形如左下图,经过1.1Hz低通滤波后的波形如
右下图
在临界抽样频率2Hz下的到的抽样波形如左下图,经过1.1Hz滤波后得到的波形如右下图
临界抽样频率下的频谱如下图
2.当抽样频率变为1.5Hz时,为欠抽样,抽样波形如左下图,经过1.1Hz低通
滤波后得到的波形如右下图
1.5Hz欠抽样情况下得到的频谱如下图
3.当抽样频率变为5Hz时,为过抽样,抽样波形如下图
经过1.1Hz低通滤波后得到的波形如右下图
过采样的频谱如下图
4.当信号波形为方波时,左下图为1Hz方波信号波形,右下图为经过10Hz滤
波后方波的波形,经过预滤波后,方波中高频成分被滤除,波形变得有些失真,但是和最后抽样滤波的结果更加近似
左下图为没有经过滤波的方波被20Hz抽样信号抽样,经过10Hz低通滤波器后的波形如右下图,抽样滤波时在从抽样信号中提取方波信号时方波中的高平成分也被滤除,因而最终结果更加接近于预滤波后的方波波形。

波形的频谱如下图
5.当信号波形为锯齿波时,左下图为1Hz锯齿波信号波形,右下图为经过10Hz
滤波后锯齿波的波形,经过预滤波后,方波中高频成分被滤除,波形变得有些失真,但是和最后抽样滤波的结果更加近似
下图1 为没有经过滤波的锯齿波被20Hz抽样信号抽样,经过10Hz低通滤波器后的波形如下图2 ,抽样滤波时在从抽样信号中提取方波信号时锯齿波中的高平成分也被滤除,因而最终结果更加接近于预滤波后的锯齿波波形。

锯齿波经过20Hz抽样的频谱如下图
锯齿波和方波相似,频谱分布广,抽样时不可避免会发生频谱混叠,最后滤波结果会出现失真。

三、实验效果分析(包括仪器设备等使用效果)
思考题
1.说明采样频率变化对信号时域和频域特性的影响。

答:对于连续频谱信号,采样频率Fs大于信号最大频率的2倍时,信号抽样把不会产生混迭,才能不失真恢复原波形
2.分析采样与内插仿真模型中两个低通滤波器的作用。

答:前者预滤波,滤除信号中的高频噪声,后者用于恢复抽样后的波形四、教师评语
精选。

相关文档
最新文档