中国高放废物处置库缓冲材料物理性能
高放废物地质处置库的特点及其结构型式

高放废物地质处置库的特点及其结构型式
罗嗣海;钱七虎;王驹
【期刊名称】《地质科技情报》
【年(卷),期】2007(26)5
【摘要】总结了高放废物地质处置库在系统组成、经费投入、时间跨度、功能要求、评价目标、作用营力、影响范围、工程数量、工程布局、工程逆转和社会影响等方面有别于一般深部岩石地下工程的特点。
以美国、瑞典、日本、比利时、法国的处置库概念设计为例,介绍了各国处置库的结构型式,比较了其异同点,并对我国的处置库概念设计提出了初步建议。
【总页数】8页(P83-90)
【关键词】高放废物地质处置库;特点;结构型式
【作者】罗嗣海;钱七虎;王驹
【作者单位】江西理工大学;解放军理工大学;核工业北京地质研究院
【正文语种】中文
【中图分类】TU9;X7
【相关文献】
1.高放废物地质处置的岩体深部结构面特征研究——以甘肃北山高放废物地质处置地下实验室工程为例 [J], 王锡勇;李冬伟;成功;罗鹏程
2.内蒙古塔木素高放废物地质处置库三维地质建模研究 [J], 许文军; 邓居智; 陈晓; 陈辉; 王显祥; 王彦国; 刘星
3.地应力对高放废物黏土岩地质处置库洞室群稳定性影响的数值模拟 [J], 王聪; 李洪辉; 段谟东; 江春雷; 张家铭
4.高放废物黏土岩地质处置库预选区围岩物理特性及力学性质 [J], 饶耕玮;刘晓东;刘平辉;戴朝成;梁海安
5.高放废物深地质处置库屏障系统的多场耦合数值分析 [J], 赵艺伟;吴志军;王旭宏;侯伟;杨球玉;吕涛;胡大伟;周辉;魏天宇
因版权原因,仅展示原文概要,查看原文内容请购买。
高庙子膨润土的水理性能

高庙子膨润土的水理性能摘要:缓冲-回填材料是高放废物地质处置库多重屏障系统重要组成部分,经过全国范围内的比较和筛选,内蒙古兴河县高庙子膨润土矿床被确定为我国高放废物处置库缓冲材料的首选矿床。
针对缓冲回填材料的性能要求,对内蒙古高庙子膨润土的水理性质进行了系统的实验研究。
通过与其它各地的膨润土的水理性能比较,内蒙古高庙子膨润土在水中具有良好的膨胀性、分散性和水化能力。
关键字:高能废物;地质处置库;缓冲回填材料;水理性能1 前言高放废物的安全处置是一个世界性的科学与技术难题, 是一个与核安全同等重要的问题, 也是关系到我国国防军工和核能工业可持续发展、国土环境和公众安全的重要而紧迫的重大课题。
当前, 我国已经开展了高放废物地质处置选址和场址评价、处置工程和工程材料等重大科学问题的研究。
图1 高放废物深地质处置库多重屏障系统示意图1.1高庙子钠基膨润土的物质组成蒙脱石是TOT型二八面体层状结构硅酸盐矿物,结构层为两层硅氧四面体片夹一层Al-O(OH)八面体片配合而成。
硅氧四面体片和八面体片的厚度均为0.22 nm士,所构成的结构层约0.66nm士(图1)。
层间域与水化阳离子层的厚度约0.60 nm士(钠蒙脱石)和0.8 9n m 士(钙蒙脱石)。
每一结蒙脱石是 TOT型二八面体层状结构硅酸盐矿物,结构层为两层硅氧四面体片夹一层Al-O(OH)八面体片配合而成。
硅氧四面体片和八面体片的厚度均为0.22 n m 士,所构成的结构层约0.66构层与层间域(含水化阳离子层)构成一重复周期,这一重复周期即为蒙脱石的结构单元层(图2),厚度为1.25 nm(钠蒙脱石)~l.5 nm(钙蒙脱石)。
结构层内为共价键与离子键联结,结构联结紧密,结构层之间为弱的离子键和氢键相联结。
结构层间具有可交换的水化阳离子层,其中的水分子可被其他与水分子类似的极性分子如有机极性分子所交换,而阳离子可被无机或有机阳离子所交换。
因而蒙脱石可通过钠化及有机化处理达到使蒙脱石结构分散剥离的目的。
温度对膨润土及其混合物性质的影响

温度对膨润土及其混合物性质的影响杜延峰;崔素丽;王学攀【摘要】在高放废物地质处置工程中,放射性废物的衰变发热会导致处置库环境温度升高,从而影响缓冲回填材料-膨润土及其混合物的工程性能。
综合已有文献的试验数据,分析总结了温度对膨润土及其混合物性质的影响。
结果表明温度升高会影响膨润土的微观结构,包括孔隙比和孔径分布;同时也会改变膨润土及其混合物的工程性质,包括持水能力、膨胀性质及强度特性。
【期刊名称】《陕西理工大学学报:自然科学版》【年(卷),期】2017(033)006【总页数】5页(P50-54)【关键词】高放废物;膨润土及其混合物;温度影响;工程性质【作者】杜延峰;崔素丽;王学攀【作者单位】西北大学地质学系大陆动力学国家重点实验室,陕西西安710069;西北大学地质学系大陆动力学国家重点实验室,陕西西安710069;西北大学地质学系大陆动力学国家重点实验室,陕西西安710069;【正文语种】中文【中图分类】TU411电站反应堆产生的乏燃料中有大量的放射性元素,具有较高的放射性,如不妥善处理,将严重威胁到周围环境以及人类的生命财产安全,这就需要把这些乏燃料与生活空间隔离开。
针对如何处理高放射性废料,专家学者纷纷提出了各自的处置方案,目前普遍认为深部地质处置是最有效、最可行的方法。
深部地质处置一般采用的是多重屏障的方法,最外层是由基岩组成的天然屏障,内层是由缓冲回填材料组成的工程屏障,从外到内依次为基岩、缓冲回填材料、废物包装容器、废物固化体。
膨润土因具有优良的物理、化学特性而被普遍选为缓冲回填层的基材。
核废料在处置以后因为衰变会不断的产生热能导致周围温度升高,而升高的温度可能会对作为缓冲回填材料的膨润土及其混合物的性质产生影响。
本文总结前人的研究成果,综合分析已有文献的试验数据,从膨润土自身性质、水力性质、力学特性等方面,研究温度对膨润土及其混合物工程性质的影响。
1 温度对膨润土结构影响1.1 对微观结构的影响膨润土是由蒙脱石族矿物组成的粘土物质。
高庙子膨润土作为缓冲/回填材料的研究进展

处环境等因素综合考虑 , 冲/ 缓 回填材料需满足的条 件为¨ : J长斯稳 定性 、 学 性 、 胀 性 、 透 水性 、 力 膨 低 核
素迁移 的迟滞性 、 热传 导性 、 耐辐 射性 和经 济性 。通 过多年 的研 究发 现 , 蒙脱 石 为 主 要 成 分 的高 压 实 以 钠基膨 润土是最合 适 的高放 射性 核废 料深 地质处 置 缓 冲/ 回填 材料 , 它具有 以下 优 点 [ : 1 低渗 透性 , 2 () 1
膨润 土作 为缓 冲/ 回填 材 料 的可 行 性 。本 文 主要 对
由高放废物固化体 、 人工屏障和天然屏障组成 , 高放 废物 固化体外 面 的包 装 容 器 和缓 冲/ 回填 材 料统 称
为人 工屏 障。从高放 射性 废物 的性 质 以及处 置库所
高庙子膨润土作 为缓 冲/ 回填材料 的研究进展作了
1 矿 物组 成 、 观 结 构 及 其 变化特 征 微
膨 润 土的矿物 组 成和微 观结 构决定 了膨润 土的
性质 。膨润 土 中的蒙 脱石含 量越 多 , 亲水性越强 , 其 胀缩性 越 大 。微 观结 构决定 膨润 土 的膨 胀与收缩性 以及强 度特性 。因此 , 研究 膨润 土 的矿 物组成 、 微观
刘月妙… 等人 对未经提纯处理 的天然高庙子
膨 润土样 品 , 进行 了 x 射 线 衍 射 分 析 、 外 光谱 分 红 析、 化学全 分析 、 x射 线 荧 光 稀 土元 素 分析 等 , 结果 显示 : 高庙 子膨 润 土主要 矿物 为蒙脱 石 , 为方石 其次 英, 丝光沸 石 和正 长 石 。高 庙 子 膨润 土 蒙脱 石含 量 较 高 , 6 .7 ~8 . 2 。 化 学 成 分 以 SO 、 为 37% 0 9% i,
国内外高放废物地质处置的介绍及国内进展

国内外高放废物地质处置的介绍及国内进展摘要:本文介绍了高放废物的类别、国内外高放废物地质处置的概念、及其主要技术问题的研究。
最后,简要介绍了国内在高放废物地质处置方面的规划、选址、进展情况。
关键词:高放废物;地质处置1引言核科学技术在给人类社会带来巨大能源的同时也产生了大量的放射性废物,核废物的安全处理与最终处置在很大程度上影响着核能产业的未来和生命力。
按照放射性水平的不同,核废物通常可分为高放废物(HLW)、中放废物(ILW)和低放废物(LLW),其中尤以高放废物的处理与处置最为困难。
按照美国核管会(NRC)1981年的定义,核电站高放废物主要包括下列两类:核电站卸出的不经处理的乏燃料高放废液的固化体在这两类高放废物中,其主要核素有锶、铯、钚、镅、镎等超铀元素。
由于这些超铀元素的半衰期长、放射性毒性大、放射性水平高、发热量大,需要把它们同人类生存环境长期、可靠地隔离。
世界上十多个国家对高放废物处置曾提出过多种方案,如太空处置、海洋处置、冰层处置及地质处置等等,多年来,通过分析和对比,许多发达国家对高放废物地质处置的安全性和现实性达成共识,我国也于2003年颁布了《中华人民共和国放射性污染防治法》规定对高放废物和α废物应当采用集中的深地质处置方法,这使得高放废物地质处置成为开发时间最长,也是目前最有希望投入应用的处置方案[1]。
本文将主要介绍国内外高放废物地质处置的理念和关键技术问题的研究开发进展,以及我国在这方面的规划、选址、进展情况。
2.高放废物地质处置的基本概念和基本方法2.1、高放废物地质处置的基本概念高放废物地质处置是一项将放射性核素包容、阻滞为核心内容,并设多重屏障为主要手段的复杂系统工程,它主要利用土壤、岩石等地质材料,采用地质手段及一整套设施将高放废物封闭在一个有限的地质空间内,在存贮数百年乃至上千年的时间段里,与人类生存环境长期或永久的隔离,不再取回。
目前国内外最为广泛且易接受的高放废物地质处置概念是三重屏障系统[2],即高放废物存储容器、人工回填材料层[3]和天然屏障。
高放废物地质处置库预选缓冲材料压缩性能研究

[ 键 词 ] 高 放 废 物 ;深 地 质 处 置 ;钠 基 膨 润 土 ;压 实 成 型性 ;抗 压 强 度 关 [ 章 编 号 ] 1 0—6 8 2 0 ) 20 9-5 文 0 00 5 (0 70 —0 10 [ 图 分 类 号 ] X 9 中 51 [ 文献 标 识 码 ] A
( . 京科 技 大 学 土 木 与 环 境 工 程 学 院 ,北 京 1 0 8 ;2 1北 0 0 3 .核工 业 北 京 地 质 研 究 院 ,北 京 1 0 2 ) 0 0 9
[ 要 ]缓 冲 材 料 是 高 放 废 物 深 地 质 处 置 多重 屏 障 系 统 中 非 常 重 要 的 一 道 人 工 屏 障 , 内 蒙 古 高 庙 摘 子 钠 基 膨 润 土 被 确 定 为 我 国 高 放 废 物 深 地 质 处 置 缓 冲 材 料 的 首 选 基 料 。通 过 研 究 该 钠 基 膨 润 土
2 ,预 定 压 实 干 密 度 分 别 为 1 4 1 6和 O .、 .
1 8 g e 。 . / r 。 a
试验 表 明 ,压 制 预 定 密 度 的 样 品所 需 的
中国高放废物处置库缓冲材料选择与基本性能

ef cie w y t aey d s o i g h g —e e a ia t e w se n t e w rd h o c p u l mo e f f t a o s f l ip sn ih lv l r d o c i a t s i h o l .T e c n e t a d lo e v v g oo i a ip s l i h n s b s d o l — a re y tm h tc mb n s a s l t g g o o ia e l gc l d s o a n C i a i a e n a mu t b rir s se t a o i e n ioa i e lg c l i n e v r n n t n e gn e e a r rs se n i me twi a n ie r d b ri y tm.T e b f r i n ft e man e g n e e a ir o o h e h u f s o e o h i n i e r d b r e s fr e
frChn ’ u frmae i l t d . o i a S b f t r u y e a s
Ke y wor :Ga mi o iNa— e t nt ds o a z b n o ie;b f rma e a ; b scp o e y; n c e rwa t s o a ufe tr l a i r p r i t u la se dip s l
全 有 效处 置 具 有 重要 意 义 。
[ 键 词 ]高 庙 子 钠基 膨 润 土 ;缓 冲材 料 ;基 本 性 能 ;核 废 物 处置 关
hih e e a o c i e wa t e st r g lv lr dia tv se r po io y
高放废物地质处置库系统分析方法研究——以甘肃北山预选区花岗岩场址为例的开题报告

高放废物地质处置库系统分析方法研究——以甘肃北山预选区花岗岩场址为例的开题报告研究背景与意义:高放废物是指放射性元素超过自然界背景水平的废物。
由于其具有长期危险性和极高的放射性,因此需要进行安全的处置。
地质处置被认为是目前最可行的方法之一,即将废物封存在地表以上1000米深的岩层内,形成高放废物地质处置库。
然而,高放废物处置的安全性受到多种因素的影响,如地质条件、地质构造、深度等,因此需要对高放废物地质处置库进行系统的分析和评估。
研究对象及内容:本文以甘肃北山预选区花岗岩场址为例,对高放废物地质处置库系统进行分析方法研究。
研究内容包括以下几个方面:1.高放废物地质处置库系统构成分析:包括地质构造、岩石类型、水文地质等方面的分析,以建立高放废物地质处置库系统构成的分析体系。
2.高放废物地质处置库系统安全性评价方法:根据高放废物地质处置库系统构成的分析体系,建立相应的高放废物地质处置库系统安全性评价方法,包括系统可靠性分析、安全等级评估、灾害风险评估等。
3.风险因素分析:对高放废物地质处置库系统可能存在的风险因素进行分析,包括地震、泄漏、离子迁移等因素,以确定高放废物地质处置库的安全性。
研究方法:本文采取文献资料法、实地调查法、模拟实验法等研究方法,具体包括以下几个方面:1.文献资料法:分析国内外已有的高放废物地质处置库研究文献,了解现有的研究进展和存在的问题,为本研究提供理论支持。
2.实地调查法:通过实地考察和采样,获取甘肃北山预选区花岗岩场址的有关地质数据,并建立地质模型和地质图,为高放废物地质处置库系统分析提供基础数据。
3.模拟实验法:利用专业的模拟实验设备对高放废物地质处置库系统进行模拟实验,以验证系统的可行性和安全性。
研究意义:本研究将为高放废物地质处置库系统的安全性评价提供理论支持,为相关政策制定、建设和管理提供参考,具有重要的理论和实践意义。
同时,本研究也可推动高放废物地质处置库系统分析方法的研究,促进相关领域的学术进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25卷第4期岩石力学与工程学报V ol.25 No.4 2006年4月Chinese Journal of Rock Mechanics and Engineering April,2006PHYSICAL PROPERTY OF CHINA′S BUFFER MATERIAL FOR HIGH-LEVEL RADIOACTIVE WASTE REPOSITORIESWEN Zhijian(Beijing Research Institute of Uranium Geology,China National Nuclear Corporation,Beijing100029,China)Abstract:The deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes(HLW) in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system including the vitrified HLW, canister, overpack and buffer/backfill material. The bentonite is selected as base material of the buffer/backfill material in HLW repositories,due to the very low permeability and excellent retardation of nuclides from migration,etc. GMZ deposit is selected as the candidate supplier for buffer material of HLW repositories in China. Since 2000,systematic study was conducted on GMZ–1 that is Na-bentonite produced from GMZ deposit and selected as reference material for Chinese buffer material study. The mineral composition,basic parameters of GMZ–1 bentonite and thermal conductivity,hydraulic conductivity,unconfined compression strength as function of dry density and water content are presented. The swelling stress of GMZ–1 bentonite as function of dry density is also reported. GMZ–1 bentonite is characterized by high content of montmorillonite(about 75%) and less impurities. The adequacy understanding of property and long-term behavior in deep geological condition of GMZ–1 is essential to safe dispose the high-level radioactive wastes in China.Key words:high-level radioactive wastes disposal;GMZ–1;buffer material;physical propertiesCLC number:TL 942+.21 Document code:A Article ID:1000–6915(2006)04–0794–07 中国高放废物处置库缓冲材料物理性能温志坚(核工业北京地质研究院,北京 100029)摘要:深地质处置被国际上公认为处置高放废物的最有效可行的方法。
中国深地质处置的概念模型采用多重工程屏障系统(包括废物固化体、废物容器、外包装、缓冲/回填材料)和适宜的地质围岩地质体共同作用来确保高放废物与生物圈的安全隔离。
膨润土由于具有极低的渗透性和优良的核素吸附等性能而被国际上选作缓冲材料的基础材料。
经过全国筛选,高庙子膨润土矿床被选作我国缓冲材料供应基地。
从2000年起,对产自该矿床的钠基膨润土GMZ–1开始了系统的研究工作。
介绍了GMZ–1的矿物组成、基本特征和GMZ–1在不同干密度、不同含水量条件下的热传导、水传导、力学性能参数及GMZ–1在不同干密度条件下的膨胀特性参数测定结果。
GMZ–1Received date:2005–08–30;Revised date:2005–12–20Corresponding author:WEN Zhijian(1968–),male,Ph. D.,obtained his bachelor degree at Department of Geology,Peking University,Beijing in 1990. He is presently the professor at Research Center for Environmental Protection,Beijing Research Institute of Uranium Geology. His main research activities第25卷 第4期 WEN Zhijian. Physical Property of China ′s Buffer Material for High-level Radioactive Waste • 795 •钠基膨润土具有蒙脱石含量高(75%左右)、杂质矿物相对较少的特点,对于该材料的系统和深入研究对于开发我国缓冲回填材料技术,确保高放废物的安全有效处置有重要意义。
关键词:高放废物处置;高庙子膨润土;缓冲材料;物理性能1 INTRODUCTIONRadioactive waste is produced from a wide rangeof human activities. The wastes are in many different physical and chemical forms ,contaminated with varying activities of radionuclides. High-level radioactive waste(HLW) is characterized with very high initial radioactivity ,and presents a potential long-term risk ,even though it decreases with time ,Total activity is initially dominated by beta/gamma emitting short- lived fission products that decay considerably over several decades to hundreds years. Over a longer timescale ,the longer-lived actinides and their radioactive daughters(many of them are alpha- emitters) make a more significant contribution to total activity. The safe disposal of high-level radioactive waste is a key requirement of the nuclear industry worldwide.Among the options discussed for disposing of HLW ,an international consensus has emerged that deep geological disposal on land is the mostappropriate means for isolating such wastes permanently from environment [1]. The concept of geological disposal of high-level radioactive wastes in China is based on a multi-barrier system that combines an isolating geological environment with the vitrified HLW ,canister ,overpack and buffer/ backfill material(Fig.1).Fig.1 Conceptual model for China ′s high-level radioactivewaste disposalThe buffer is one of the main engineered barriers for HLW repository. It was early concluded that clay-based embedment of canisters and backfill indrifts and shafts offers the best isolation through the low hydraulic conductivity and canister supporting ability of such materials. Assessment of the various properties had led to the conclusion that montmorillonite- rich clays are most suitable for preparing the buffer material. Bentonite would appear to fulfill the criteria placed on the buffer material in a deep repository for high-level nuclear waste [2–4]. The buffer material isexpected to maintain its low water permeability ,thermal conductivity ,self-sealing ,radionuclide sorption and retardation ,chemical buffering ,canister support and stress buffering properties over a long period of time [5].The scientific scope of buffer/backfill materials study is summarized by the author ,as shown in Fig.2.In China ,from 1985 on ,Chinese scientists began to study the bentonite ′s behavior and its feasibility as buffer material in HLW repository. The related scientific activities cover literature investigation anduse of inorganic sorbents as backfill materials forunderground repository [6],bentonite deposit screening [7],study of basic property of GMZ Ca-bentonite [8] and GMZ Na-bentonite [9] and comparison study of basic property between GMZ –1 and KunigelV1 bentonite [10]. GMZ deposit is selected as a candidate buffer supplier in China in 1996[7] and GMZ –1 Na bentonite was selected as a reference material for Chinese buffer/ backfill study in 2002[9].2 GMZ –1 BENTONITEGMZ –1 bentonite is Na-bentonite produced from GMZ deposit and selected as reference material for Chinese buffer material study.The mineralogical composition of GMZ –1 has BackfillRock massRock massCanister B u f f e rV i t r i f i e d w a s t e G r o u n d w a t e r• 796 • 岩石力学与工程学报 2006年Fig.2 Scientific scope of buffer/backfill materials studyanalyses. The bulk composition was determined as :quartz 11.7%,cristobalite 7.3%,feldspar 4.3%,calcite 0.5%,kaolinite 0.8%,and montmorillonite 75.4%.The basic feature of GMZ –1,the reference material for Chinese buffer/backfill material is summarized in Table 1.Table 1 Basic parameters of GMZ –1 bentoniteMontmorillonite content/% Methyleneblue exchangecapacity/(mmol · (100 g)-1)Cation exchangecapacity /(mmol · (100 g)-1) Real density /(g ·cm -3)Alkaliindex 75.4 102 77.30 2.661.14Exchangeable cation/(mmol ·(100 g)-1) pH E (k +)E (Na +)E (1/2Ca 2+)E (1/2Mg 2+)8.68–9.862.51 43.36 29.14 12.333 PHYSICAL PROPERTIES OF GMZ –1The bentonite buffer material around the HLW canister has a key role for repository safety. It must hold the canister in the center of the disposal pit. The buffer will also have to conduct the fuels ′ residual heat. The bentonite will hinder groundwater ,possibly containing various corrosive substances from flowingfreely to the canisters ′ surface. Another key property of the buffer material is its ability to swell by water uptake ;therefore it fills voids in the engineered barriers and fractures in the surrounding host rock.Thus ,in case of Chinese candidate buffer material :GMZ –1,basic parameters related to swelling ,thermal ,hydraulic and mechanic properties should be obtained in order to assess its feasibility to be served as buffer in HLW repository. 3.1 Thermal propertiesThe buffer is required to have a good thermal conductivity in order to promote effective heat transfer to the surrounding rock. This keeps temperatures in the waste package low ,preventing recrystallization of glass that might be caused by elevated temperaturesarising from the radiogenic heat of the vitrified waste. As the buffer is not completely saturated immediately after emplacement of the waste packages ,the thermal properties of unsaturated buffer should be specified in the design [11]. Therefore ,thermal conductivity as function of dry density(1.4,1.6,1.8 g/cm 3) and water content(9%,14%,18%,24%) was measured by surface heat source method in this study. The instrument is thermophysical Properties Analyzer TP A 501(Fig.3). The experimental results are given in Table 2.第25卷第4期WEN Zhijian. Physical Property of China′s Buffer Material for High-level Radioactive Waste • 797 •Fig.3 Instrument for thermal conductivity testTable 2 Results of GMZ–1 thermal conductivity testswith dry density and water contentDry density/(g·cm-3) Water content/%Thermal conductivity/(W·(m·K)-1)8.76 0.5713.83 0.8318.17 0.971.424.07 1.198.64 0.8013.56 1.1017.94 1.301.626.70 1.518.61 1.021.813.36 1.43The thermal properties of the buffer depend on factors such as density,void ratio and water content,in a similar manner to general soil materials[5]. The thermal conductivity of GMZ–1 increases as the dry density increases for the same water content;and the thermal conductivity increases as the water content increases for the same dry density. 3.2Hydraulic propertiesWhen the waste package is emplaced,the buffer is in an unsaturated condition suitable for transportation and handling. After that,groundwater is drawn into the buffer by capillary action,the voids become filled with groundwater and the buffer becomes saturated. Therefore,it is necessary to understand the hydraulic properties for both the saturated and unsaturated state. In this study,The experiments on the density-dependence and the temperature-dependence of the saturated hydraulic conductivity of GMZ–1 have been conducted.Permeability tests are conducted according to the Japanese Geotechnical Society Standard(JGS T311). The test cell of diameter 50 mm and depth 10 mm is filled with test material at specified density(1.4,1.6,1.8 g/cm3) and set in a thermostatically controlled heating element. At each temperature in the stepwise heating process(25 ℃→60 ℃→90 ℃),distilled water is injected through the test sample by compressed air of 0.3 MPa(1.4 g/cm3) /0.6 MPa(1.6,1.8 g/cm3) and the outflow rate is measured with an electronic balance(Fig.4).The saturated hydraulic conductivity k(m·s-1) is calculated from the outflow rate Q(m3·s-1) by the following equation in accordance with Darcy′s law:Q = kiA (1) where A is cross-section area of the test sample(m2),and i is hydraulic gradient.Experimental results are shown in Table 3. The hydraulic conductivities of GMZ–1 increase as the temperature increases,and decrease as the dry density increases.3.3Mechanical propertiesThe buffer material should provide sufficient mechanical supports of the overpack to ensure the stability[12]. Mechanical property includes compressive strength,modulus of elasticity,shear properties,consolidation properties and tensile strength,etc.Unconfined compression strengths of GMZ–1 as function of dry density(1.4,1.6,1.8 g/cm3) and waterSensor BentoniteBentonite• 798 • 岩石力学与工程学报 2006年Fig.4 Schematic view of equipment for hydraulic conductivity testTable 3 Results of GMZ–1 hydraulic conductivity testswith dry densities and temperaturesDry density /(g·cm-3) Temperature/℃Hydraulic conductivity/(m·s-1)25 1.12×10-1260 1.87×10-121.490 2.91×10-1225 1.94×10-1360 3.61×10-131.690 5.75×10-1325 9.99×10-1460 1.99×10-131.890 3.00×10-13content(9%,14%,18%,24%) at room temperature was conducted in this study. The instrument is AG–10TB. The cylindrical specimen size is 30 mm (diameter)×60 mm(height). The strain rate is approximately to be 1×10-2/min. The test method and procedures basically conform to the Japanese Geotechnical Society Standard(JGS T511). Data are given in Table 4.In general,with the same water content,a larger initial dry density leads to a larger unconfined compressive strength,and with the same dry density,Table 4 Results of GMZ–1 unconfined compression testswith dry densities and water contentsReal dry density/(g·cm-3)Water content/%Unconfined compression strength/MPa8.32 0.9613.24 1.3717.45 1.051.422.80 1.048.29 3.0613.06 3.4317.43 2.371.623.58 1.748.51 6.5012.80 7.401.817.09 5.15a larger water content leads to a less unconfined compressive strength. The unconfined strength for GMZ–1 with 12.8%–13.24% water content is higher than that with other water content for the same dry density,which might be related to the optimum water content.3.4Swelling characteristicsA key property of the buffer material is its abilityto swell by water uptake,thereby filling voids in theMeasured unit Experimental columnPressure gaugeRubber balloonCompressorPressuring tankPermeated solution SpecimenElectronic balanceTeflon filterPorous stoneThermostat with circulation system第25卷 第4期 WEN Zhijian. Physical Property of China ′s Buffer Material for High-level Radioactive Waste • 799 •engineered barriers and fractures in the surrounding host rock.Thus ,parameters related to swelling property are necessary to the design of buffer material. Since the stress applied on the confined boundary surface when a bentonite specimen is infiltrated with water is not always equal to the swelling pressure [11] and so the applied stress on this confined boundary surface is defined here as the “swelling stress ”[12]. Swelling stresses as function of dry density(1.2,1.4,1.6,1.8 g/cm 3) were measured in this study. The instrument for swelling stress measurement is shown in Fig.5;and the corresponding data are given in Table 5.Fig.5 Test apparatus for measurement of swelling stress [12]Table 5 Swelling stresses as a function of dry densitiesDry density/(g ·cm -3)Swelling stress/MPa1.2 0.09 1.4 0.58 1.6 3.17 1.8 10.10Table 5 shows that the swelling stress increases as dry density increases.4 CONCLUSIONSThe deep geological disposal is regarded as the high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system and buffer/backfill material is one of the most important engineering barriers in the HLW repositories. Due to the very low permeability and excellent retardation of nuclides from migration etc.,the bentonite is selected as base material of the buffer/backfill material in HLW repositories. GMZ deposit is selected as the candidate supplier for buffer material of HLW repositories in China. From 2000 on ,systematic study has being conducted on GMZ –1 that is Na-bentonite produced from GMZ deposit and selected as reference material for Chinese buffer material study. GMZ –1 bentonite is characterized by high content of montmorillonite(about 75%) and less impurities. The systematic study on GMZ –1 is essential to safe dispose the high-level radioactive wastes in China. ACKNOWLEDGEMENTS The author wishes to thank No.102 Geological Party in Inner Mongolia Autonomous Region ,Geological Bureau in Xinhe County for supporting the field investigation. The author is grateful to professor Xu Guoqing and Miss Liu Yuemiao for their useful discussions. The author wishes to thank Mr. Mikazu Yui ,Mr. Kenji Tanai ,Mr. Hiroshi Sasamoto and Mr. Takashi Jintoku for their considerate arrangements of experiments. The helps ofMr. Kazuhiro Matsumoto and Mr. Hirohito Kikuchi were fundamental for the present work. The China National Nuclear Corporation (CNNC) and the Nuclear Researchers Exchange Program that were organized by the Ministry of Education ,Culture ,Sports ,Science and Technology (MEXT) of the Japanese government provided the financial support.References(参考文献):[1] OECD/NEA. Geological Disposal of Radioactive Waste Review ofDevelopments in the Last Decade[M]. Beijing :Atomic Energy Press ,2001.[2] Pusch R. Required physical and mechanical properties of BufferMasses(KBS Technical Report No.33)[R]. Sweden :Swedish Nuclear Project(Svensk Kärnbränslehantering AB),1977.[3] Pusch R. High compacted sodium bentonite for isolatingPistonSpecimenWater inletTeflon filterPorous metal filterCellUnit in mmLoad cellData logger2520φ 20• 800 • 岩石力学与工程学报 2006年1979,45(2):153–157.[4] Pusch R. The buffer and backfill handbook,part 2:materials andtechniques(SKB TR–02–12)[R]. [s. l. ]:Svensk Kärnbränsle- hantering A B,2001.[5] PNC. Research and development on geological disposal of high-levelradioactive waste:the first progress report(H3)[R]. PNC:TN 1410,1992.[6] Gu Q,Du Z. Property of bentonite as buffer-backfill material and itsapplication[J]. Oversea Uranium and Gold Geology,1992,(Supp.):73–95.[7] Xu G,Li Y,Gu Q,et al. Selection of bentonite deposits[R]. Beijing:Beijing Research Institute of Uranium Geology,China National Nuclear Corporation,1996.[8] Liu Y,Xu G,Liu S,et al. Study on basic property of GMZCa-bentonite[R]. Beijing:Beijing Research Institute of UraniumGeology,China National Nuclear Corporation,2000.[9] Wen Z J,Liu Y. The first progress report on the study of GMZ sodiumbentonite[R].Beijing:Beijing Research Institute of Uranium Geology,China National Nuclear Corporation,2002.[10] Wen Z J,Jintoku T. Comparison study of basic property betweenGMZ–1 and Kunigel V1 Bentonite(Final report for MEXT Nuclear Researchers Exchange Program)[R]. [s. l. ]:[s. n. ],2003.[11] Fujita T,Chijimatu M,Kanno T,et al. Model of swelling pressure ofhighly compacted bentonite[A]. In:Proceedings of the International Symposium on Problematic Soils,IS-TOHOKU′98[C]. Tohoku:[s.n. ],1998. 285–288.[12] Japan Nuclear Cycle Development Institute(JNC). H12:project toestablish the scientific and technical basis for HLW disposal in Japan[R]. Tokyo:Japan Nuclear Cycle Development Institute,TN1410,2000.《岩石力学与工程学报》、《岩土力学》联合致作者公开信——关于一稿多投的处理意见《岩石力学与工程学报》、《岩土力学》均为建筑科学与水利工程类核心期刊和EI核心收录期刊。