9传染病模型与微分方程数值解

合集下载

数学建模之传染病模型-参考模板

数学建模之传染病模型-参考模板

第五章 微 分 方 程 模 型如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型.§1 传 染 病 模 型建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题.考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位.一. SI 模 型假设条件:1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i .2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康人有效接触时,使健康者受感染变为病人. 试建立描述()t i 变化的数学模型.解: ()()1=+t i t s ()()N N t i N t s =+∴由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为()t i N ,∴每天共有()()t i N t s λ个健康人被感染.于是i s N λ就是病人数i N 的增加率,即有i s N dtdiNλ= (1)i s dtdiλ=∴而1=+i s . 又记初始时刻(0=t )病人的比例为0i ,则()()⎪⎩⎪⎨⎧=-=001i i i i dt diλ 这就是Logistic 模型,其解为 ()te i t i λ-⎪⎪⎭⎫ ⎝⎛-+=11110[结果分析]作出()t t i ~和i dtdi~的图形如下:1. 当21=i 时,dtdi 取到最大值mdt di ⎪⎭⎫⎝⎛,此时刻为⎪⎪⎭⎫⎝⎛-=-11ln 01i t m λ2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的).二. SIS 模 型在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.假设1、2同SI 模型,增加假设:3. 病人每天被治愈的人数占病人总数的比例为μ,称为日治愈率.病人治愈后成为易感染者(健康人).显然μ1是这种传染病的平均传染期.解:在假设1、2、3之下,模型(1)修正为i N i Ns dtdiNμλ-= 于是 ()()⎪⎩⎪⎨⎧=--=001i i i i i dt diμλ解得()()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+≠⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=--- = -μλλμλμλλμλλμλ,1,11010i t e i t i t [结果分析] 1. 令μλσ=.注意到λ和μ1的含义,可知σ是一个传染期内每个病人有效接触的平均人数,称为接触数.()⎪⎩⎪⎨⎧-=∞ 011σi 11≤>σσ1-2. 接触数1=σ是一个阈值.当1≤σ时,病人比例()t i 越来越小,最终趋于零.当1>σ时,()t i 的增减性取决于0i 的大小,其极限值()σ11-=∞i .3. SI 模型是SIS 模型中0=μ的情形.三. SIR 模 型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者,也非病人,他们已经退出传染系统,此时模型的假设为 1.人群分为健康者、病人和病愈免疫的移出者三类,称为SIR 模型.三类人在总人数N 中占的比例分别记作()i s 、()t i 和()t r .1. 病人的日接解率为λ,日治愈率为μ(与SIS 模型相同),传染期接触数为μλσ=.解:由假设1,有()()()1=++t r t i t s 0=++∴dtdrdt di dt ds 由假设2,得i N dt dr N μ= N i N i s dtdiN μλ-=⎪⎪⎩⎪⎪⎨⎧-==∴i i s dt di i dtdrμλμ 又设()()()00,0,000===r i i s s于是()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00s 0s ,0i i i s dtdsi i s dt diλμλ……………………………………………(2) 我们在相平面上来讨论解的性质. 相轨线的定义域为(){}1s ,0,0s ,s ≤+≥≥=i i i D 由(2)式消去dt ,得⎪⎩⎪⎨⎧=-==0s s 01s 1s i i d di σ 这里 μλσ= 解得()000s sln1s -i s σ++=i ………………………………………(3) 在定义域D 内,(3)式表示的曲线即为相轨线.---精心整理,希望对您有所帮助。

第六讲 微分方程模型(人口模型.传染病模型.战争模型)

第六讲 微分方程模型(人口模型.传染病模型.战争模型)

问题分析
不同类型传染病的传播过程有不同的特点。 故不从医学的角度对各种传染病的传播过程一 一进行分析,而是按一般的传播机理建立模型. 由于传染病在传播的过程涉及因素较多, 在分析问题的过程中,不可能通过一次假设建 立完善的数学模型. 思路是:先做出最简单的假设,对得出的 结果进行分析,针对结果中的不合理之处,逐 步修改假设,最终得出较好的模型。
模型的建立
假设2、3得:
ቤተ መጻሕፍቲ ባይዱi N k Ns(t )i (t ) Ni(t ) dt i (0) i0
将假设1代入,可得模型:
di k i(1 i ) i dt i (0) i0
模型的解:
k k 1 ( k )t 1 ( ) ] k [e i0 k k i (t ) (k t 1 ) 1 k i0
方程的解:
I (t ) n n knt 1 1e I 0
对模型作进一步分析
传染病人数与时间t关系
传染病人数的变化率与时间t 的关系 增长速度由低增至最高后 降落下来
染病人数由开始到高峰并 逐渐达到稳定
n ln( 1) 疾病的传染高峰期 2 I0 d I 此时 计算高峰期得: t0 0 2 dt kn 意义: 1、当传染系数k或n增大时,t0随之减少,表示传 染高峰随着传染系数与总人数的增加而更快 的来临,这与实际情况比较符合。 2、令λ=kn,表示每个病人每天有效接触的平均 人数,称日接触率。t0与 λ成反比。 λ表示该 地区的卫生水平, λ越小卫生水平越高。故 改善卫生水平可推迟传染病高潮的来临。
模型的建立
di dt k si i ds k si dt i (0) i0 s (0) s0

微分方程模型案例分析

微分方程模型案例分析

微分方程模型案例分析-------传染病传播的数学模型张清华由于人体的疾病难以控制和变化莫测,因此医学中的数学模型较为复杂。

医学中的数学模型分为两大类:传染病传播的数学模型和疾病数学模型。

以下仅讨论传染病的传播问题。

人们将传染病的统计数据进行处理和分析,发现在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。

这一现象如何解释呢?关于这个问题,医学工作者试图从医学的不同角度进行解释都得不到令人满意的解释。

最后由于数学工作者的参与,在理论上对上述结论进行了严格的证明。

同时又由于传染病数学模型的建立,分析所得结果与实际过程比较吻合,这个现象才得到了比较满意的解释。

传染病传播所涉及的因素很多,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡等。

如果还要考虑人员的迁入与迁出,潜伏期的长短以及预防疾病的传播等因素的影响,那么传染病的传播就变得非常复杂。

如果一开始就把所有的因素考虑在内,那么将陷入多如乱麻的头绪中不能自拔,倒不如舍去众多的次要因素,抓住主要因素,把问题简化,建立相应的数学模型。

将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。

下面由简单到复杂将建模的思考过程作一个示范,读者可以从中得到很好的启发。

1 模型一假设(1),每个病人在单位时间内传染的人数是常数K 0;假设(2),一人得病后,经久不愈,并在传染期内不会死亡。

记i t ()表示t 时刻病人数,K 0表示每个病人单位时间内传染的人数,i i ()00=,即最初有i 0个传染病人。

则在∆t 时间内增加的病人数为i t t i t K i t t ()()()+-=∆∆0于是得微分方程⎪⎩⎪⎨⎧==00)0()()(i i t i K dt t di (1), 其解为 i t i e k t ()=00结果表明:传染病的传播是按指数函数增加的。

这个结果与传染病传播初期比较吻合,传染病传播初期,传播快,被传染人数按指数函数增长。

传染病的传播模型与分析

传染病的传播模型与分析

传染病的传播模型与分析传染病是指通过接触、空气传播、飞沫传播等途径从一个人传播到另一个人的疾病。

了解传染病的传播模型以及相应的分析方法对预防与控制传染病具有重要意义。

本文将探讨传染病的传播模型以及常用的分析方法。

一、传染病的传播模型1. SIR模型SIR模型将人群分为易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三个互不重叠的类别,描述了传染病在人群中的传播过程。

在这个模型中,一个人从易感者状态转变为感染者状态后再转变为康复者状态,整个过程是一个动态的流程。

2. SEIR模型SEIR模型在SIR模型的基础上增加了一个潜伏期状态(Exposed),即感染者已经被病原体感染但尚未表现出明显症状。

该模型可以更准确地描述某些疾病的传播特征,例如新冠病毒。

3. 网络传播模型网络传播模型基于人与人之间复杂的联系,将人与人之间的接触关系表示为网络结构,从而可以更好地研究疾病在社交网络中的传播过程。

该模型为防控传染病提供了新的思路和方法。

二、传染病的分析方法1. 流行病学调查流行病学调查是研究传染病传播规律的核心方法之一。

通过对患者、病原体、传播途径等进行全面的调查,可以了解感染源、传播途径、传染力大小等信息,从而为疫情防控提供科学依据。

2. 数学模型数学模型是传染病研究中常用的工具之一。

基于传染病的传播机理以及传染力大小等参数,可以建立相应的数学模型,并通过模型推导出预测结果,如疫情的发展趋势、传播速度等。

常用的数学模型包括微分方程模型、积分方程模型、格点模型等。

3. 统计分析统计分析是对大量传染病数据进行处理和分析的重要手段。

通过对病例数据进行整理、汇总和统计,可以得到病例分布、死亡率、复发率等重要指标。

同时,还可以运用统计学方法对数据进行建模和预测。

4. 传播网络分析传播网络分析是一种基于网络结构的方法,可以研究传染病在社交网络中的传播特征。

通过分析网络拓扑结构、节点特征以及传播路径等信息,可以发现传播的薄弱环节和高风险群体,并制定有针对性的防控策略。

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展.虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。

这些特殊的方法和问题,将有助于我们解决很多问题。

引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征.比如,我们可以试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。

通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。

最后再通过微分方程求出未知函数.关键字:微分方程起源发展史一、微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式。

微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。

例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。

1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。

1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。

物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。

传染病的传播模型与传播规律分析

传染病的传播模型与传播规律分析

传染病的传播模型与传播规律分析1.引言传染病是指由病原体引起的疾病,在人类历史上造成了无数的灾难。

了解传染病的传播模型和传播规律对于制定有效的预防和控制策略具有重要意义。

本文将探讨传染病的传播模型和传播规律,并提供一些应对传染病的建议。

2.传播模型2.1 SI模型SI模型是最简单的传染病传播模型,将人群分为易感者(Susceptible individuals)和感染者(Infected individuals)两个部分。

在这个模型中,感染者可以传播疾病给易感者,但一旦感染者康复,他们不能再次感染。

SI模型可以用以下微分方程来描述:dS/dt = -βSIdI/dt = βSI其中,S表示易感者数量,I表示感染者数量,β表示传染率。

该模型适用于对于一些单纯感染但没有康复的传染病。

2.2 SIR模型SIR模型在SI模型的基础上引入了康复者(Recovered individuals)部分。

在该模型中,感染者被分为两个亚类别:康复者和死亡者。

相比于SI模型,SIR模型更符合现实情况。

该模型的微分方程可以表示为:dS/dt = -βSIdI/dt = βSI - γIdR/dt = γI其中,R表示康复者的数量,γ表示康复率。

SIR模型适用于具备一定免疫力的传染病,如流感等。

3.传播规律3.1 直接接触传播许多传染病通过直接接触传播,例如飞沫传播、血液传播等。

这种传播方式的特点是传播速度快,传染性强。

一旦患者被感染,其周围的家庭成员、工作同事等都容易受到传染。

因此,在面对这类传染病时,特别是高传染性的传染病,及时隔离和保持个人卫生非常重要。

3.2 空气传播某些传染病还可以通过空气传播,且病原体可以在空气中较长时间存活。

这类传染病的传播速度相对较慢,但是范围比较广,容易造成集体性感染。

为了有效控制这类传染病的传播,应该保持室内空气流通,提高室外空气质量,并积极配合相关部门做好疫情监测。

3.3 社交网络传播随着社交网络的发展,虚拟社交网络也成为传染病传播的重要途径。

传染病模型—微分方程模型的应用

传染病模型—微分方程模型的应用

(日治愈率) 医疗水平
• 降低 s0
的估计
提高 r0
s0 i0 r0 1
s0
i0
s
1

ln s s0
0
忽略i 0
群体免疫
ln s0 ln s
s0 s
模型4
被传染人数的估计
SIR模型
记被传染人数比例 x s0 s
s0

i0

s
模型4
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
假设 1)总人数N不变,病人、健康人和移
出者的比例分别为 i(t), s(t), r(t)
2)病人的日接触率 , 日治愈率, 接触数 = /
建模 s(t) i(t) r(t) 1
需建立 i(t), s(t), r(t) 的两个方程

1
s
1
i
1
i(s)

(s0

i0
)

s

1

ln
s s
i ss0 i0
D
0
i(0) i0 , s(0) s0
P4
s(t)单调减相轨线的方向 im s 1/ , i im t , i 0
P2
P1
P3
s满足
s0
i0
s
1

ln
s s0

1

ln
s s0
0
i0 0, s0 1
x 1 ln(1 x ) 0

s0
i
1x
x<<s0 x(1 s0 2s02 ) 0

数学建模——传染病模型

数学建模——传染病模型

传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。

本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。

不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。

本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。

然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。

本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。

同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。

关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。

考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。

2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。

建立模型求t时刻的感染人数。

3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
3、使用泰勒公式
以此方法为基础,有龙格-库塔法、线性多步法等方法
库塔三阶方法 四阶龙格-库塔公式
? ?
yn ? 1
?
?
yn ?
h 6
(K1
?
4K2 ?
K 3 ),
? ?
K
1
?
f ( x n , y n ),
? ?
K
2
?
f ( xn
?
h 2 , yn
?
h 2 K 1 ),
?? K 3 ? f ( x n ? h , y n ? hK 1 ? 2 hK 2 ).
6
4、数值公式的精度 当一个数值公式的截断误差可表示为o(hk)时(k为正整数,h为步长),称它是一个k
阶公式。 k越大,则数值公式的精度越高。
欧拉法是一阶公式,改进的欧拉法是二阶公式。
线性多步法有四阶阿达姆斯外插公式和内插公式。
北京邮电大学数学系
7
(三)用Matlab 软件求常微分方程的数值解 [t,x]= solver( ‘f', ts, x0, options )
[t,y]=ode45(@dfun2,[0,20],[2,0]);
1、建立m-文件dfun2.m 如下: function dx=dfun2(t,y)
)]
k ? 0,1,2,?
对于已给的精确度
?,当满足
y ? y ( k ? 1)
(k)
i?1
i?1
?
? 时,取
y i?1
?
y , ( k ?1) i?1
然后继续下一步 y i? 2 的计算。
此即改进的欧拉法
北京邮电大学数学系
4
? 中点欧拉公式 /* midpoint formula */
中心差商近似导数
北京邮电大学数学系
2
(二)建立数值解法的一些途径
设 x i?1 ? xi ? h, i ? 0,1,2,? n ? 1, 可用以下离散化方法求
? y' ? f(x, y)
? ?
y(x
0
)
?
y0
1、用差商代替导数
解微分方程:
若步长h较小,则有
故有公式:
y'( x) ? y( x ? h) ? y( x) h
第五章 微分方程模型
常微分方程的数值解 5.1 传染病模型
北京邮电大学数学系
1
常微分方程的数值解及实验
(一)常微分方程数值解
高数中微分方程解法在实际中基本不会直接使用
在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题, 一般是要求得到解在若干个点上满足规定精确度的近似值 ,或者得到一个满足精确度要求的便 于计算的表达式。
y?( x1 ) ?
y( x2 ) ? y( x0 ) 2h
y¢( x1 )
y( x 2 ) ? y( x 0 ) ? 2 h f ( x 1 , y( x 1 ))
x0
x1
x2
yi ? 1 ? yi ? 1 ? 2 h f ( x i , yi ) i ? 1, ... , n ? 1
北京邮电大学数学系
用于设定误差限(缺省时设定相对误差10-3, 绝对误差10-6), 命令 为:options=odeset('reltol',rt,'abstol',at), rt, at:分别为设定的相对误差和绝对误差.
北京邮电大学数学系
8
注意: 1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分 量形式写成.
2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.
北京邮电大学数学系
9
微分方程求解实例
设取步长
,从

用四阶龙格-库塔方法
求解初值问题
建立m-文件dfun1.m如下
function dx=dfun1(x,y) dx=y-2*x/y;
输入命令
h=0.2; ts=0:h:1; y0=1;
[t, x]=ode45('dfun1',ts,y0);
[t, x], plot(t,x)
北京邮电大学数学系
3、结果如图
0
1.0000
0.2000 1.1832
0.4000 1.3416
0.6000 1.4832
0.8000 1.6125
1.0000 1.7321
10

? ? ?
d 2x dt 2
?
(x2
?
1)
dx dt
?
x
?
0
?? x(0) ? 2; x '(0) ? 0
解: 令 y1=x,y2=y1',
则微分方程变为一阶微分方程组:
? ? ?
y1 y2
' '
? ?
y2 (1 ?
y12 ) y2
?
y1
?? y1 (0) ? 2, y2 (0) ? 0
2、取t0=0, tf=20, 输入命令:
自变 量值
函数 值
ode45 ode23 ode113 ode15s ode23s
由待解 方程写 成的m文件名
ts=[0t,tf],
t0、tf为自变量 的初值和终

函数初 值条件
[t,x]=ode23(‘f', ts, x0级) 2阶3龙格 -库塔公式 [t,x]=ode45(@f, ts, x0) 级4阶5 龙格 -库塔公式
? ? ?
yi? 1 ? yi ? hf y0 ? y( x0 )
( xi
,
yi
)
i ? 0,1,2, ?
,n -1
此即欧拉法(向前欧拉法).
对应有隐式欧拉法
北京邮电大学数学系
? ? ?
yi? 1 ? yi ? hf y0 ? y( x0 )
( xi? 1 ,
yi ? 1 )
3
2、使用数值积分
梯形方法/*trapezoid formula*/
对方程y'=f(x,y), 两边由xi到xi+1积分,并利用梯形公式, 有
? y( xi?1 ) ? y( xi ) ?

xi?1 f ( x, y( x)) dx
xi
?
( xi ? 1
?
xi ) ?
f ( xi ,
y( xi ))
? f ( xi ?1 , 2
y( xi ?1 ))
故有公式
?? ?
yi
因此,研究常微分方程的数值解法十分必要。
对常微分方程

? ? ?
y' ? y(x
0
f(x,y) ) ? y0
,其数值解是指由初始点
x 0开始
的若干离散的 xi 处,即对 x0 ? x1 ? x2 ? L ? xn,求出准确值 y(x 1 ),
y( x2 ), L , y( xn ) 的相应近似值 y1 , y2 ,L , yn。
?
1
?
yi
?
h[ 2
f ( xi ,
yi ) ?
f ( xi?1 , yi?1 )]
?? y0 ? y( x0 )
实际应用时,与欧拉公式结合使用
??
y (0 ) i?1
?
yi
?
hf ( xi , yi )
? ??
y(k? i?1
1)
?
yi ?
h 2
[
f
( xi
,
yi
)
?
f
(
xi ? 1
,
y (k ) i?1
相关文档
最新文档