6.4.1双星、三星、四星模型总结
双星系统

(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.
三星模型公式总结

三星模型公式总结
三星模型是指由三个行星组成的稳定三星系统,忽略其他行星对其影响,一般有两种形式。
1、三颗行星在一条直线上,其中有两颗行星绕第三个行星在同一轨道半径R上做匀速圆周运动,如下图。
设其中两行星的轨道半径为R,三颗行星的质量都为m。
分析:整个解题过程还是一样,始终抓住万有引力提供向心力,如果多个万有引力提供向心力,那么把多个万有引力进行矢量合成,合力提供向心力,三星模型很明显对于一个行星来说,会受到另外两行星对它的万有引力,所以得将这两个万有引力进行合成,合成以后的力提供向心力。
对行星1:(等式左边为行星3、行星2对行星1万有引力的合力)
可解的:
周期
2、三颗行星位于等边三角形的三个顶点上,运动轨迹为这个三角形的外接圆,如下图。
设三颗行星的质量都为m,外接圆的半径为R。
分析:三颗行星都在做匀速圆周运动,做圆周运动的向心力由另外两个行星对其万有引力的合力提供。
对行星2受力分析示意图
由几何关系可得
F1、F2的合力
合力提供向心力,这样就可以得出运动的周期T,周期T解出,运动的速度也可以得出。
双星、三星模型可以解,四星、五星模型也是一样解,始终抓住万有引力提供向心力,如果一个行星受到多个行星对它的万有引力,那么就进行矢量合成,合成后的万有引力提供向心力。
2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

(1)对第一种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有
GRm12 2+G2Rm122=mR1(2Tπ)2. (2)对第二种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有Gm2 r2源自cos30°+Grm2 2
cos 30°=mR22Tπ2
答案:BD
练 2 月球与地球质量之比约为 1:80,有研究者认为月球和
地球可视为一个双星系统,它们都围绕地月连线上某点 O 做匀
速圆周运动.据此观点,可知月球与地球绕 O 点运动线速度大
小之比约为( )
A.1:6 400 B.1:80
C.80:1
D.6 400:1
解析:月球和地球绕 O 点做匀速圆周运动,它们之间的万有引 力提供各自的向心力,则地球和月球的向心力相等.且月球、地球 和 O 点始终共线,说明月球和地球有相同的角速度和周期.因此有 mω2r=Mω2R,所以vv′=Rr =Mm,线速度和质量成反比.故选 C.
微专题(四) 双星、三星模型
模型建构
模型一 双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点:它们间的距离为 L.此双星问题的特点是:
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某 一点.
【解析】 双星系统周期相同(角速度相同),所受万有引力作 为向心力相同,所以 B 项错误,D 项正确;由 F=mω2r,m1r1ω2= m2r2ω2,得 m1v1=m2v2,vv12=mm21=23,A 项错误;rr12=mm21又 r1+r2=L,
双星模型

.双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双??FF,作用力的方向在双星间的连线上,角速度星系统的引力作用遵循牛顿第三定律:?????。
相等,21【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。
(引力常量为G)】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案2【例题天文学家观测河外星系大麦哲伦云时,发现了.之一是观测双星系统的运动规律不考两星视为质点,B构成,LMCX3双星系统,它由可见星A和不可见的暗星点做匀速圆周运动,它们之间的OB围绕两者连线上的虑其他天体的影响.A、v的速率由观测能够得到可见星A.引力常量为G,距离保持不变,如图4-2所示T.和运行周期视为质(m′的星体F可等效为位于O点处质量为(1)可见星A所受暗星B的引力a). m表示m′(用m、A和B的质量分别为m、m,试求点)对它的引力,设2121 m之间的关系式;v、运行周期T和质量求暗星B的质量m与可见星A的速率(2)12A.若可见星2倍,它将有可能成为黑洞(3)恒星演化到末期,如果其质量大于太阳质量m的s45有B,试通过估算来判断暗星,质量m m/s,运行周期T=4.7π×10=6m s的速率v=2.7×10s1可能是黑洞吗?302-112 10)/kg kg,m(G=6.67×10=2.0×N·m s】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距3【例题、ML,质量分别为始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为1)双星运动的周期。
高中物理天体运动多星问题

双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。
双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。
【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。
根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗? (G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。
(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
多星系统模型

阻力f kx k
2 1
1 cm x
1区面积与2区面积相等 k/2=(k+kx)(x-1)/2
深度x
4.利用微元法求变力做功
将物体的位移分割成许多小段,因小段很小,每一小 段上作用在物体上的力可以视为恒力,这样就将变力 做功转化为在无数个无穷小的位移方向上的恒力所 做元功的代数和。此法在中学阶段常应用于求解大 小不变、方向改变的变力做功问题。
特点: 外围三颗行星转动的方向相同,周期、角速度、线速度的大小相等
解题模板
谢谢观看
高中物理微课堂
变力做功的计算
故城县高级中学韩跃荣
思维激活
一个质量为m的小球,用长为L的轻绳悬挂于O点,小 球在水平拉力F作用下,从平衡位置P点很缓慢地移动到 Q点,此时轻绳与竖直方向夹角为θ,如图所示,则拉力F所 做的功是否为FLsin θ?为什么?
解析:第一次做功W=F1d=kd2/2 第二次做功W=F2d/=d/(kd+kd/)/2
d/ = -1
3.用F-x图象求变力做功
在F-x图象中,图线与x轴所围“面积”的代数和就表 示力F在这段位移方向上所做的功,且位于x轴上方的 “面积”为正,位于x轴下方的“面积”为负,但此方法中 学阶段只适用于便于求图线所围面积的情况(如三角 形、矩形、圆等规则的几何图)。
例5(微元法)如图所示,在水平面上,有一弯曲的槽道 AB,槽道由半径分别为 R/2 和R的两个半圆构成。现用 大小恒为F的拉力将一光滑小球从A点沿槽道拉至B点, 若拉力F的方向时刻与小球运动方向一致,则此过程中拉 力所做的功为
5.化变力为恒力求变力做功
变力做功直接求解时,通常都比较复杂,但 若通过转换研究对象,有时可转化为求恒力 做功,可以用W=Flcos α求解。此法常应用于 轻绳通过定滑轮拉物体的问题中。
专题 天体运动的“”四个热点“”问题

专题 天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图1所示。
图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为r 1+r 2=L(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型模型 三星模型(正三角形排列) 三星模型(直线等间距排列) 四星模型图示向心力的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力【例1】 (多选)(2018·全国Ⅰ卷,20)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析 由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例题1】宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。
设三颗星质量相等,每个星体的质量均为m。
(1)试求第一种情况下,星体运动的线速度和周期
(2)假设第二种情况下星体之间的距离为R,求星体运动的线速度和周期
【例题1】宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为;另一种形式是有三颗星位于边长为a的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其
运动周期为,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比1
2
T
T.
【解析】对三绕一模式,三颗绕行星轨道半径均为
a,所受合力等于向心力,因此有
222
22
2
1
4
2
(3)
m
+G=m a
a T
a
π
⋅︒
①解得
3
2
1
3)a
T=
Gm
π
②对正方形模式,四星的轨道半径均为
2
2
,同理有
O
a
O r
2222222
422cos 452(2)m G +G =m a a T a π⋅︒ ③ 解得23
2
24(4-2)7a T =Gm π ④ 故12(42)(33)4
T --=T。