Logistic回归模型基本知识

合集下载

logistic回归的模型公式

logistic回归的模型公式

logistic回归的模型公式Logistic回归模型是一种经典的统计学习方法,用于解决二分类问题。

它通过建立一个逻辑回归方程,预测某个样本属于某一类别的概率。

本文将介绍Logistic回归模型的原理和应用,并探讨其优缺点。

一、Logistic回归模型的原理Logistic回归模型是建立在线性回归模型的基础上,通过引入一个非线性函数(称为Logistic函数或Sigmoid函数)将线性回归的输出结果转化为概率值。

Logistic函数的数学表达式为:f(x) = 1 / (1 + e^(-x)),其中e为自然对数的底。

该函数的特点是输出值在0和1之间,可以用来表示某个事件发生的概率。

在Logistic回归模型中,假设有n个自变量(特征)x1,x2,...,xn,对应的回归系数为β1,β2,...,βn。

模型的方程可以表示为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn),其中P(y=1|x)表示样本属于正例的概率。

为了估计回归系数,通常采用最大似然估计方法。

具体来说,我们希望通过最大化似然函数来找到最优的回归系数,使得模型对观测数据的拟合度最高。

然后,利用估计得到的回归系数,我们可以对新的样本进行预测,并给出其属于正例的概率。

二、Logistic回归模型的应用Logistic回归模型有广泛的应用领域,尤其在医学、金融、市场营销等领域中得到了广泛的应用。

在医学领域,Logistic回归模型常用于疾病风险预测和诊断模型的建立。

例如,可以利用患者的年龄、性别、血压等特征来预测患者患某种疾病的风险。

在金融领域,Logistic回归模型可以用于信用评分和违约预测。

银行可以根据客户的个人信息和历史信用记录,利用Logistic回归模型来评估客户的信用风险,并据此决定是否给予贷款。

在市场营销领域,Logistic回归模型可以用于客户分类和市场细分。

根据客户的购买行为、兴趣爱好等特征,可以预测客户对某种产品或服务的购买概率,进而制定相应的市场营销策略。

统计学中的Logistic回归分析

统计学中的Logistic回归分析

统计学中的Logistic回归分析Logistic回归是一种常用的统计学方法,用于建立并探索自变量与二分类因变量之间的关系。

它在医学、社会科学、市场营销等领域得到广泛应用,能够帮助研究者理解和预测特定事件发生的概率。

本文将介绍Logistic回归的基本原理、应用领域以及模型评估方法。

一、Logistic回归的基本原理Logistic回归是一种广义线性回归模型,通过对数据的处理,将线性回归模型的预测结果转化为概率值。

其基本原理在于将一个线性函数与一个非线性函数进行组合,以适应因变量概率为S形曲线的特性。

该非线性函数被称为logit函数,可以将概率转化为对数几率。

Logistic回归模型的表达式如下:\[P(Y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+...+\beta_pX_p)}}\]其中,P(Y=1|X)表示在给定自变量X的条件下,因变量为1的概率。

而\(\beta_0\)、\(\beta_1\)、...\(\beta_p\)则是待估计的参数。

二、Logistic回归的应用领域1. 医学领域Logistic回归在医学领域中具有重要的应用。

例如,研究者可以使用Logistic回归分析,探索某种疾病与一系列潜在风险因素之间的关系。

通过对患病和非患病个体的数据进行回归分析,可以估计各个风险因素对疾病患病的影响程度,进而预测某个个体患病的概率。

2. 社会科学领域在社会科学研究中,研究者常常使用Logistic回归来探索特定变量对于某种行为、态度或事件发生的影响程度。

例如,研究者可能想要了解不同性别、教育程度、收入水平对于选民投票行为的影响。

通过Logistic回归分析,可以对不同自变量对于投票行为的作用进行量化,进而预测某个选民投票候选人的概率。

3. 市场营销领域在市场营销中,Logistic回归也被广泛应用于客户分类、市场细分以及产品销量预测等方面。

通过分析客户的个人特征、购买习惯和消费行为等因素,可以建立Logistic回归模型,预测不同客户购买某一产品的概率,以便制定个性化的市场营销策略。

Logistic回归模型

Logistic回归模型

Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。

显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。

为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。

于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。

另外从函数的变形可得如下等价的公式:XT X T T eep X ppp Logit βββ+=⇒=-=11ln)( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。

而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。

为此模型(2)可以表述成:kx k x kxk x k k ee p x x p p βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(ln y E y E -是k x x x ,,,21 的线性函数。

此时我们称满足上面条件的回归方程为Logistic 线性回归。

Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。

Logistic回归模型基本知识

Logistic回归模型基本知识

Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。

显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。

为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。

于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。

另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。

而Tk x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。

为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(lny E y E -是k x x x ,,,21 的线性函数。

此时我们称满足上面条件的回归方程为Logistic 线性回归。

Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。

logistic回归基本概念

logistic回归基本概念

逻辑回归是一种广泛使用的统计工具,其核心在于利用多维特征对结果进行建模。

它是机器学习中的一个重要组成部分,常被用于金融预测、市场营销以及健康保险理赔等。

与决策树等其他算法相比,逻辑回归具有更强的可解释性,能够清晰地揭示各个特征对结果的影响。

逻辑回归基于一组输入变量(也称为特征或自变量),通过训练数据集估计出一条或几条直线,以此为基础对新的样本进行分类或预测。

这种算法具有直观、简洁和可解释性强的优点,而且适合处理各种数据类型,无论是连续的还是离散的。

在逻辑回归中,因变量通常是二分类的,例如“是否购买某商品”或“是否患某种疾病”。

通过训练数据集,模型可以学习到各个特征与这个二分类因变量之间的关联。

这种关联被表示为权重,它们揭示了每个特征对结果的贡献程度。

通过这些权重,我们不仅能了解各个特征的重要性,还能根据新样本的特征预测其属于正类(通常记为1)或负类(通常记为0)的概率。

逻辑回归在许多领域都有广泛的应用。

例如,在金融领域,它被用来预测客户是否可能违约;在医疗领域,它被用来预测患者患某种疾病的风险;在市场营销领域,它被用来预测消费者是否可能购买某产品。

通过这些预测,企业和研究人员可以更好地理解客户、病人或消费者的行为和需求,从而制定更有效的策略。

总的来说,逻辑回归是一种强大而灵活的统计工具,具有广泛的应用前景。

它不仅能帮助我们更好地理解数据和预测结果,还能提供可解释性和透明度,使决策者能够基于坚实的证据做出决策。

无论是在
学术研究、商业决策还是日常生活中,逻辑回归都发挥着重要的作用。

logistic回归分析

logistic回归分析

Logistic回归分析
数学模型:
e p 1 e
1 X 1 2 X 2 m X m
1 X 1 2 X 2 m X m
Logistic回归分析
一、基本思想
用模型去描述实际资料时,须使 得理论结果与实际结果尽可能的一致。
资料整理格式
Logistic回归分析
1
消除xj量纲的影响
2.标准化偏回归系数j 的意义
果的发生,为“不利因素”;
xij
xij x j sj
(1)符号:取 “+”,xj 增大,则P增大,即促进阳性结
取 “-”,xj增大,则P减小,即抑制阳性结 果的发生,为“保护因素”。 (2)大小 :∣ j ∣越大,则xj 对结果的影响也就越大。
i 1 2 n
x1 x11 x21 xn1
x2
...
xm x1m x2m xnm
δ δ δ δ
1 2
x12 ... x22 ... …... xn2 ...
n
Logistic回归分析
二、基本原理
1.结果问题 : 对于第i个个体而言,其理论结果为pi , 而实际结果是i 。 2.一致问题: 对于第i个个体而言, i =1 pi i =0 qi
m

OR e j 1
j ) ˆ j ( x*j x
(1)对多指标的共同效应进行评价:

若OR>1,则处于X*水平下的阳性结果发生风险要高于X 水平, 即“不利因素”占主导地位;



若OR<1,则处于X*水平下的阳性结果发生风险要低于X 水平, 即“保护因素”占主导地位;

回归分析-Logistic回归

回归分析-Logistic回归

zi = β 0 + β1 xi + ε i
其中 权系数
ri pi 1 zi = ln ~ N (ln , ) & ni − ri 1 − pi ni pi (1 − pi )
ni % , ε i = ε i / wi ~ N (0,1) wi = & ri (ni − ri )
回归模型
p( x ) ln = 0.013 − 0.25 x 1 − p( x )
Logistic 回归分析
前言
Logistic回归模型的基本思想 Logistic回归模型的参数估计
基本原理
Y 多元线性回归模型: = β0 + β1 x1 + β 2 x2 + ... + β n xn = β0 + X β β 其中是β 0 截距, 是参数向量,X是自变量向量。
表示n个自变量x与反应变量Y间的关系,Y为任 意实数 ,属于连续变量
yi i
n
1− yi
似然函数 对数似然
L( β 0 , β1 ) = ∏ piyi (1 − pi )1− yi
i =1
n n
ln L( β 0 , β1 ) = ∑ yi (β 0 + β1 xi ) − ∑ ln(1 + e β0 + β1xi )
i =1 i =1
加权最小二乘
设x可以取值x1,x2……xk。x=xi时,Y的取值 为yi(yi=0或1); 如果模型正确 pi ln = β 0 + β1 xi 1 − pi 观测模型
该转换称为logit转换。P为事件发生的概率,1-P 为事件不发生的概率
p 1− p
=e
β0 + X β

logistic回归模型的原理与应用

logistic回归模型的原理与应用

logistic回归模型的原理与应用Logistic回归模型是一种重要的统计学习方法,在分类问题中得到广泛应用。

本文将介绍Logistic回归模型的原理及其在实际应用中的场景。

一、原理1.1 Logistic回归模型的基本概念Logistic回归模型是一种用于解决分类问题的线性模型,旨在通过将输入特征与相应的概率联系起来,实现对不同类别的分类。

1.2 Logistic函数在Logistic回归模型中,使用了一种称为Logistic函数(也称为Sigmoid函数)的特殊函数作为模型的基础。

Logistic函数的公式如下:$$g(z) = \frac{1}{1 + e^{-z}}$$其中,z表示线性模型的预测值(z = wx+b),g(z)表示通过Logistic函数获得的概率值。

1.3 损失函数与最大似然估计Logistic回归模型通过极大似然估计来确定模型参数。

常用的损失函数是交叉熵损失函数(Cross-Entropy Loss),其目标是最小化观测样本的预测概率与真实标签之间的差异。

1.4 参数估计为了确定Logistic回归模型的参数,通常使用梯度下降等优化方法进行参数估计。

通过迭代更新模型参数,使得损失函数逐渐减小,从而得到最优的参数估计结果。

二、应用场景2.1 二分类问题Logistic回归模型常用于解决二分类问题,如判断邮件是否为垃圾邮件、预测患有某种疾病的概率等。

通过将特征与相应的概率联系起来,可以根据阈值将样本分为两个类别。

2.2 多分类问题Logistic回归模型还可以扩展到多分类问题。

常见的应用包括手写数字识别、图像分类等。

通过对每个类别进行一对其他类别的二分类,可以得到每个类别的概率,从而实现多分类问题的解决。

2.3 风险预测在金融领域,Logistic回归模型被广泛应用于风险预测。

通过建立预测模型,可以根据客户的信用评分、借贷记录等因素,对客户是否存在违约风险进行预测。

2.4 市场营销Logistic回归模型还可以用于市场营销领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。

显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。

为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。

于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。

另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。

而Tk x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。

为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(lny E y E -是k x x x ,,,21 的线性函数。

此时我们称满足上面条件的回归方程为Logistic 线性回归。

Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。

不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。

因此评价模型的拟合度的标准变为似然值而非离差平方和。

定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为OR=kx k x e pp βββ+++=- 1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称-2ˆln ()L β为估计值βˆ的拟合似然度,该值越小越好,如果模型完全拟合,则似然值ˆ()L β为1,而拟合似然度达到最小,值为0。

其中ˆ()lnL β表示βˆ的对数似然函数值。

定义3 记)ˆ(βVar 为估计值βˆ的方差-协方差矩阵,21)]ˆ([)ˆ(ββVar S =为βˆ的标准差矩阵,则称 k i S w iii i ,,2,1,]ˆ[2 ==β (5)为iβˆ的Wald 统计量,在大样本时,i w 近似服从)1(2χ分布,通过它实现对系数的显著性检验。

定义4 假定方程中只有常数项0β,即各变量的系数均为0,此时称20ˆˆ2[ln ()ln ()]L L χββ=-- (6) 为方程的显著性似然统计量,在大样本时,2χ近似服从)(2k χ分布。

1.2 Logistic 模型的分类及主要问题根据研究设计的不同,Logistic 回归通常分为成组资料的非条件Logistic 回归和配对资料的条件Logistic 回归两种大类。

还兼具两分类和多分类之分,分组与未分组之分,有序与无序变量之分。

具体如下: 两分类非条件Logistic 回归:分组数据的Logistic 回归,未分组数据的Logistic 回归; 多分类非条件Logistic 回归:无序变量Logistic 回归,无序变量Logistic 回归; 条件Logistic 回归:1:1型、1:M 型和M:N 型Logistic 回归。

关于Logistic 回归,主要研究的内容包括:1. 模型参数的估计及检验 2. 变量模型化及自变量的选择 3. 模型评价和预测问题 4. 模型应用2 Logistic 模型的参数估计及算法实现2.1 两分类分组数据非条件Logistic 回归因变量(反应变量)分为两类,取值有两种,设事件发生记为y=1,不发生记为 y=0,设自变量T k x x x X ),,,(21 =是分组数据,取有限的几个值;研究事件发生的概率)|1(X y P =与自变量X 的关系,其Logistic 回归方程为:k k x x X y P X y P βββ+++=== 110)|0()|1(ln 或 kx k x kxk x ee X y P ββββββ+++++++== 1101101)|1( 例2.1.1 分组数据[1]在一次住房展销会上,与房地产商签订初步购房意向书的有n=325人,在随后的3个月时间内,只有一部分顾客购买了房屋。

购买房屋的顾客记为1,否则记为0。

以顾客的年家庭收入(万元)作为自变量X ,对数据统计后如表2.1.1所示,建立Logistic 回归模型。

表2.1.1 购房分组数据例2.1.2 药物疗效数据[2]为考察某药物疗效,随机抽取220例病人并分配到治疗组和对照组,治疗组采用治疗药物,对照组采用安慰剂。

治疗一段时间后观察病人的疗效,得到表2.1.2数据。

设y 为疗效指标(y=1 有效,y=0无效),1x 为治疗组指标(1为治疗组,0为对照组),2x 为年龄组指标(1为>45岁,0为其他)。

上述两个例子数据都是经过统计加工后的分组数据,对此类数据进行Logistic 回归,首先要明确应变量对应事件的发生概率如何确定和进行Logit 变换,其次才能建立Logistic 回归。

为便于数据处理,我们将此类数据的格式作个约定,排列格式为(组序号,自变量X ,该组事件发生数,该组总例数)。

表2.1.3 分组数据的标准格式表2.1.1 改造表表2.1.2 改造表经过改造后,可得我们关心的事件的发生的频率为 n i n m p i ,,2,1,ii==该组总例数该组发生事件数。

其中n为分组数,然后作Logit 变换,即iii i p p p Logit p -==1ln )(~。

变换后的数据,形式上已经可以采用一般的线性回归的处理方式来估计回归参数了。

此时方程变为:∑==+=kj ij j i n i x p 10,,2,1,~ββ 当然这样处理并没有解决异方差性,当i n 较大时,i p ~的近似方差为: )(,)1(1)~(i i i i i i y E n p D =-≈πππ (7)所以选择权重 n i p p n i i i i ,,2,1),1( =-=ω,最后采用加权最小二乘法估计参数。

注意,分组数据的Logistic 回归只适用于大样本分组数据,对小样本的为分组数据不适用,并且以组数n 为回归拟合的样本量,明显降低了拟合精度,在实际应用中必须谨慎。

求解算法及步骤:1.依据分组数据的标准格式,计算频率i p 、Logit 变换i p ~和权重i ω 2.构建加权最小二乘估计:∑∑∑∑====--=--n i kj ij j i i i i n i k j ij j i i x y x y 11201120)(min )(min βωβωωββω (8)令 i i i y y ω=*,T ik i i i i i x x X ),,,(1*ωωω =,T k ),,,(10ββββ =则方程又变成一般的线性回归模型:∑=-ni i T i X y12**)(minβ (9)3.构造增广矩阵21****][+⨯+k k T TY X X X利用消去法得]ˆ)ˆ([ββVar I =矩阵,得到估计βˆ其中2,1++K K I 为残差平方和SE , 回归方差1ˆ2--=k n SEσ各系数检验采用 )1(~ˆˆ--=k n t I t ii i i σβ总平方和∑∑∑===-=ni ni ini ii ii y yST 112122)()(ωωω,回归平方和SE ST SR -=总平方和求解相当于拟合i i y ωβ*0*=方程的残差平方和,故得上式ST所以方程的检验为)1,(~)1/(/----=k n k F k n SE kSR F例2.1.1的求解过程如下(由LLLStat 统计软件计算):表2.1.4 数据Logit 变换及权重家庭年收入x 实际购买mi 签订意向ni比例pi 逻辑变换Logit 权重ni*pi(1-pi) 1.500000 8 25 0.320000 -0.753772 5.440000 2.500000 13 32 0.406250-0.3794907.718750 3.500000 26 58 0.448276 -0.207639 14.344828 4.500000 22 52 0.423077 -0.310155 12.692308 5.500000 20 43 0.465116 -0.139762 10.697674 6.500000 22 39 0.564103 0.257829 9.589744 7.500000 16 28 0.571429 0.287682 6.857143 8.500000 12 21 0.571429 0.287682 5.142857 9.50000010150.666667 0.6931473.333333表2.1.5 回归模型基本信息 总样本 9求解方法 加权最小二乘 仅常数项beta0 -0.095029 方程F 统计量 51.982160 F 分布自由度 1,7 方程检验p 值 0.000176 总平方和 8.798294 回归平方和 7.754112 残差平方和1.044181表2.1.6 分组Logistic 回归系数检验序号 均值回归系数系数标准误 t 统计量 自由度df检验P 值 常数项 2.837815 -0.848882 0.113578 -7.473994 7 0.000056 家庭年收入x14.901140 0.1493230.0207117.20986570.000056表2.1.7 1][-X X T0.086479 -0.014517 -0.014517 0.002876本例Logistic 模型的回归方程:xe xe pi 149323.0848882.0149323.0848882.01ˆ+-+-+=对于多分类无序自变量的Logistic 回归,即某个自变量为m 个水平的名义变量(如治疗方法A,B,C ),只需要引入m -1(2个)个哑变量,然后采用上述方法进行分析。

相关文档
最新文档